Toshiyuki Nakata

List of Publications by Year in descending order

Source: https:|/exaly.com/author-pdf/2575732/publications.pdf
Version: 2024-02-01

Smart wing rotation and trailing-edge vortices enable high frequency mosquito flight. Nature, 2017,
$1544,92-95$.

2 Aerodynamic performance of a hovering hawkmoth with flexible wings: a computational approach.

Flight of the dragonflies and damselflies. Philosophical Transactions of the Royal Society B:
4.0

Biological Sciences, 2016, 371, 20150389.

A CFD-informed quasi-steady model of flapping-wing aerodynamics. Journal of Fluid Mechanics, 2015,
$4 \quad \begin{aligned} & \text { A CFD-informe } \\ & 783,323-343 .\end{aligned}$
$3.4 \quad 70$

Enhanced flight performance by genetic manipulation of wing shape in Drosophila. Nature
$12.8 \quad 63$
$5 \quad$ Enhanced flight performance by gen

6 Owl-inspired leading-edge serrations play a crucial role in aerodynamic force production and sound
suppression. Bioinspiration and Biomimetics, 2017, 12, 046008.
2.9

59
$7 \quad$ Aerodynamic imaging by mosquitoes inspires a surface detector for autonomous flying vehicles.
$7 \quad \begin{aligned} & \text { Aerodynamic imaging by } \\ & \text { Science, 2020, 368, 634-637. }\end{aligned}$
$12.6 \quad 46$

8 Micro air vehicle-motivated computational biomechanics in bio-flights: aerodynamics, flight dynamics and maneuvering stability. Acta Mechanica Sinica/Lixue Xuebao, 2010, 26, 863-879.
3.4

41

9 Unsteady bio-fluid dynamics in flying and swimming. Acta Mechanica Sinica/Lixue Xuebao, 2017, 33,
663-684.
3.4

39

10 The dynamics of passive feathering rotation in hovering flight of bumblebees. Journal of Fluids and Structures, 2019, 91, 102628.
3.4

31

```
11 Quantifying the dynamic wing morphing of hovering hummingbird. Royal Society Open Science, 2017, 4,
170307.
```

$2.4 \quad 28$

Morphology Effects of Leading-edge Serrations on Aerodynamic Force Production: An Integrated Study Using PIV and Force Measurements. Journal of Bionic Engineering, 2018, 15, 661-672.
Forewings match the formation of leading-edge vortices and dominate aerodynamic force production
in revolving insect wings. Bioinspiration and Biomimetics, 2018, 13, 016009.
$2.9 \quad 20$
in revolving insect wings. Bioinspiration and Biomimetics, 2018, 13, 016009.

Development of Bio-Inspired Low-Noise Propeller for a Drone. Journal of Robotics and Mechatronics,
14 2018, 30, 337-343.
1.0

20

A CFD data-driven aerodynamic model for fast and precise prediction of flapping aerodynamics in
3.4

19
15 various flight velocities. Journal of Fluid Mechanics, 2021, 915,.

A simulation-based study on longitudinal gust response of flexible flapping wings. Acta Mechanica
Sinica/Lixue Xuebao, 2018, 34, 1048-1060.
3.4

17

Number Airfoils. Frontiers in Bioengineering and Biotechnology, 2021, 9, 612182.
Morphological effects of leading-edge serrations on the acoustic signatures of mixed flow fan.
Physics of Fluids, 2022, 34, .

Recent progress on the flight of dragonflies and damselflies. International Journal of Odonatology, 2020, 23, 41-49.

Flexibility Effects of a Flapping Mechanism Inspired by Insect Musculoskeletal System on Flight Performance. Frontiers in Bioengineering and Biotechnology, 2021, 9, 612183.

Fluid-structure interaction enhances the aerodynamic performance of flapping wings: a computational study. Journal of Biomechanical Science and Engineering, 2018, 13, 17-00666-17-00666.

Effect of twist, camber and spanwise bending on the aerodynamic performance of flapping wings.
0.3

Journal of Biomechanical Science and Engineering, 2018, 13, 17-00618-17-00618.

Aeroacoustic characteristics of owl-inspired blade designs in a mixed flow fan: effects of leading- and
trailing-edge serrations. Bioinspiration and Biomimetics, 2021, 16, 066003.
2.9

6

25 Compact Sphere-Shaped Airflow Vector Sensor Based on MEMS Differential Pressure Sensors.
Sensors, 2022, 22, 1087.

Aerodynamics and flight stability of a prototype flapping micro air vehicle., 2012, ,.
5

27 Development of Microstructured Low Noise Propeller for Aerial Acoustic Surveillance., 2021, , .
3

28 Intermittent control strategy can enhance stabilization robustness in bumblebee hovering.
Bioinspiration and Biomimetics, 2021, 16, 016013.

Flight behavior of four species of Holotrichia chafer (Coleoptera: Scarabaeidae) with different
habitat use. Applied Entomology and Zoology, 2021, 56, 259-267.

Development of active CFRP/aluminum laminates and their demonstrations. Journal of Advanced
Science, 2006, 18, 6-9.
0.1

611 Evaluation of Aerodynamic Characteristics of Insect Flapping Wings by Fluid-Structure Interaction
31 Analysis. The Proceedings of the Bioengineering Conference Annual Meeting of BED/JSME, 2009,
0.0

0
2008.21, 253-254.

J0205-1-7 Study on insect-inspired wings and their mechanical properties. The Proceedings of the JSME Annual Meeting, 2010, 2010.6, 39-40.

0

J0205-1-3 Analysis of flow fields around mechanical flapping wings by using PIV measurements. The
Proceedings of the JSME Annual Meeting, 2010, 2010.6, 31-32.
0.0

0

81-03 Directly measuring surface pressures on a flapping wing of an insect-inspired robot. The
Proceedings of the Bioengineering Conference Annual Meeting of BED/JSME, 2011, 2010.23, 167-168.
0.0

0

Robustness strategies in bio-inspired flight systems: morphology, dynamics, and flight control. , 2018, ,

