
Damian B Gore

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2575557/publications.pdf Version: 2024-02-01

DAMIAN R CODE

#	Article	IF	CITATIONS
1	Characterizing the spatial distributions of soil biota at a legacy base metal mine using environmental DNA. Chemosphere, 2022, 286, 131899.	8.2	5
2	Porous metal–organic framework-based filters: Synthesis methods and applications for environmental remediation. Chemical Engineering Journal, 2022, 430, 133160.	12.7	36
3	Antarctic Ice Sheet changes since the Last Glacial Maximum. , 2022, , 623-687.		6
4	Rapid ice sheet response to deglacial and Holocene paleoenvironmental changes in eastern Prydz Bay, East Antarctica. Quaternary Science Reviews, 2022, 280, 107401.	3.0	2
5	Using a fluvial archive to place extreme flood sediment (dis)connectivity dynamics in context of a longer-term record. International Journal of Sediment Research, 2022, , .	3.5	0
6	A lithium ion selective membrane synthesized from a double layered Zrbased metalorganic framework (MOF-on-MOF) thin film. Desalination, 2022, 532, 115733.	8.2	26
7	In situ growth of two-dimensional ZIF-L nanoflakes on ceramic membrane for efficient removal of iodine. Journal of Membrane Science, 2021, 619, 118782.	8.2	28
8	History of environmental contamination at Sunny Corner Ag–Pb–Zn mine, eastern Australia: A meta-analysis approach. Environmental Pollution, 2021, 273, 115742.	7.5	10
9	Assessing metal contaminants in Antarctic soils using diffusive gradients in thin-films. Chemosphere, 2021, 269, 128675.	8.2	7
10	Assessment of legacy mine metal contamination using ants as indicators of contamination. Environmental Pollution, 2021, 274, 116537.	7.5	7
11	Application of environmental DNA for assessment of contamination downstream of a legacy base metal mine. Journal of Hazardous Materials, 2021, 416, 125794.	12.4	4
12	Impact assessment of ephemeral discharge of contamination downstream of two legacy base metal mines using environmental DNA. Journal of Hazardous Materials, 2021, 419, 126483.	12.4	7
13	A citizen science approach to identifying trace metal contamination risks in urban gardens. Environment International, 2021, 155, 106582.	10.0	42
14	Ion beam engineered graphene oxide membranes for mono-/di-valent metal ions separation. Carbon, 2020, 158, 598-606.	10.3	18
15	Precise tuning chemistry and tailoring defects of graphene oxide films by low energy ion beam irradiation. Applied Surface Science, 2020, 505, 144651.	6.1	10
16	Separating silver sources of Archaic Athenian coinage by comprehensive compositional analyses. Journal of Archaeological Science, 2020, 114, 105068.	2.4	14
17	Elemental and mineralogical constraints on environmental contamination from slag at Gulf Creek copper mine. Minerals Engineering, 2020, 154, 106407.	4.3	7
18	Human occupation, impacts and environmental management of Bunger Hills. Antarctic Science, 2020, 32, 72-84.	0.9	2

#	Article	IF	CITATIONS
19	Spatial distribution of birds and terrestrial plants in Bunger Hills. Antarctic Science, 2020, 32, 153-166.	0.9	5
20	Salt, sediments and weathering environments in Bunger Hills. Antarctic Science, 2020, 32, 138-152.	0.9	5
21	Postglacial evolution of marine and lacustrine water bodies in Bunger Hills. Antarctic Science, 2020, 32, 107-129.	0.9	8
22	Tafoni show postglacial and modern wind azimuths that are similar at Bunger Hills. Antarctic Science, 2020, 32, 130-137.	0.9	4
23	Spatio-temporal variation of skeletal Mg-calcite in Antarctic marine calcifiers. PLoS ONE, 2019, 14, e0210231.	2.5	10
24	Effects of red earthworms (Eisenia fetida) on leachability of lead minerals in soil. Environmental Pollution, 2018, 237, 851-857.	7.5	20
25	Treatment of soil co-contaminated with inorganics and petroleum hydrocarbons using silica: Implications for remediation in cold regions. Cold Regions Science and Technology, 2017, 135, 8-15.	3.5	6
26	Spatial variability of elements in ancient Greek (ca. 600–250 BC) silver coins using scanning electron microscopy with energy dispersive spectrometry (SEM-EDS) and time of flight-secondary ion mass spectrometry (ToF-SIMS). Powder Diffraction, 2017, 32, S95-S100.	0.2	3
27	Legacy base metal slags can generate toxic leachates. Powder Diffraction, 2017, 32, S70-S77.	0.2	1
28	Imaging of Jurassic fossils from the Talbragar Fish Bed using fluorescence, photoluminescence, and elemental and mineralogical mapping. PLoS ONE, 2017, 12, e0179029.	2.5	10
29	Landscape preservation under postâ€European settlement alluvium in the southâ€eastern Australian tablelands, inferred from portable OSL reader data. Earth Surface Processes and Landforms, 2016, 41, 1697-1707.	2.5	15
30	Suitability of Transportable EDXRF for the On-site Assessment of Ancient Silver Coins and Other Silver Artifacts. Applied Spectroscopy, 2016, 70, 840-851.	2.2	10
31	Nonâ€Destructive or Noninvasive? The Potential Effect of Xâ€Ray Fluorescence Spectrometers on Luminescence Age Estimates of Archaeological Samples. Geoarchaeology - an International Journal, 2016, 31, 592-602.	1.5	5
32	Handheld X-ray Fluorescence Spectrometers: Radiation Exposure Risks of Matrix-Specific Measurement Scenarios. Applied Spectroscopy, 2015, 69, 815-822.	2.2	6
33	Managing produced water from coal seam gas projects: implications for an emerging industry in Australia. Environmental Science and Pollution Research, 2015, 22, 10981-11000.	5.3	19
34	Metal and petroleum hydrocarbon contamination at Wilkes Station, East Antarctica. Antarctic Science, 2015, 27, 118-133.	0.9	15
35	Chemical immobilization of metals and metalloids by phosphates. Applied Geochemistry, 2015, 59, 47-62.	3.0	58
36	Managing legacy waste in the presence of cultural heritage at Wilkes Station, East Antarctica. Polar Record, 2015, 51, 151-159.	0.8	6

#	Article	IF	CITATIONS
37	Long-Term Acid-Generating and Metal Leaching Potential of a Sub-Arctic Oil Shale. Minerals (Basel,) Tj ETQq1 1	0.784314 2.0	rgBJ /Overloo
38	50ÂkGy of gamma irradiation does not affect the leachability of mineral soils and sediments. Powder Diffraction, 2014, 29, S40-S46.	0.2	4
39	On-site teaching with XRF and XRD: training the next generation of analytical X-ray professionals. Powder Diffraction, 2014, 29, S8-S14.	0.2	2
40	Retreat history of the East Antarctic Ice Sheet since the Last Glacial Maximum. Quaternary Science Reviews, 2014, 100, 10-30.	3.0	140
41	Geochemical insights to the formation of "sedimentary buffers†Considering the role of tributary–trunk stream interactions on catchment-scale sediment flux and drainage network dynamics. Geomorphology, 2014, 219, 1-9.	2.6	8
42	A community-based geological reconstruction of Antarctic Ice Sheet deglaciation since the Last Glacial Maximum. Quaternary Science Reviews, 2014, 100, 1-9.	3.0	228
43	Remediation of metal-contaminated soil in polar environments: Phosphate fixation at Casey Station, East Antarctica. Applied Geochemistry, 2014, 51, 33-43.	3.0	10
44	The nature and distribution of Cu, Zn, Hg, and Pb in urban soils of a regional city: Lithgow, Australia. Applied Geochemistry, 2013, 36, 83-91.	3.0	21
45	Design, installation and preliminary testing of a permeable reactive barrier for diesel fuel remediation at Casey Station, Antarctica. Cold Regions Science and Technology, 2013, 96, 96-107.	3.5	46
46	Sediment tracing in the upper Hunter catchment using elemental and mineralogical compositions: Implications for catchment-scale suspended sediment (dis)connectivity and management. Geomorphology, 2013, 193, 112-121.	2.6	22
47	Effects of freeze–thaw cycling on metal-phosphate formation and stability in single and multi-metal systems. Environmental Pollution, 2013, 175, 168-177.	7.5	19
48	Immobilization and Encapsulation of Contaminants Using Silica Treatments: A Review. Remediation, 2013, 24, 49-67.	2.4	10
49	On-site and in situ remediation technologies applicable to metal-contaminated sites in Antarctica and the Arctic: a review. Polar Research, 2013, 33, .	1.6	5
50	Formation and stability of Pb-, Zn- & Cu-PO4 phases at low temperatures: Implications for heavy metal fixation in polar environments. Environmental Pollution, 2012, 161, 143-153.	7.5	23
51	Retreat of the East Antarctic ice sheet during the last glacial termination. Nature Geoscience, 2011, 4, 195-202.	12.9	169
52	Products and stability of phosphate reactions with lead under freeze–thaw cycling in simple systems. Environmental Pollution, 2011, 159, 3496-3503.	7.5	20
53	Cosmogenic nuclide evidence for enhanced sensitivity of an East Antarctic ice stream to change during the last deglaciation. Geology, 2011, 39, 23-26.	4.4	44
54	Deglaciation and weathering of Larsemann Hills, East Antarctica. Antarctic Science, 2009, 21, 373.	0.9	36

#	Article	IF	CITATIONS
55	Application of Reactive Barriers Operated in Frozen Ground. Soil Biology, 2009, , 303-320.	0.8	7
56	Freeze–thaw cycling, moisture and leaching from a Controlled Release Nutrient source. Cold Regions Science and Technology, 2008, 52, 401-407.	3.5	15
57	Assessment of metal contamination using X-ray fluorescence spectrometry and the toxicity characteristic leaching procedure (TCLP) during remediation of a waste disposal site in Antarctica. Journal of Environmental Monitoring, 2008, 10, 60-70.	2.1	24
58	Preparation of Electrotechnical Products for Reduction of Hazardous Substances Compliance Testing. Environmental Science & Technology, 2008, 42, 4088-4092.	10.0	5
59	Exposure ages from mountain dipsticks in Mac. Robertson Land, East Antarctica, indicate little change in ice-sheet thickness since the Last Glacial Maximum. Geology, 2007, 35, 551.	4.4	91
60	Indications of Holocene sea-level rise in Beaver Lake, East Antarctica. Antarctic Science, 2007, 19, 125-128.	0.9	7
61	Post-rehabilitation environmental hazard of Cu, Zn, As and Pb at the derelict Conrad Mine, eastern Australia. Environmental Pollution, 2007, 148, 491-500.	7.5	21
62	Evaluation of geochemical methods for discrimination of metal contamination in Antarctic marine sediments: A case study from Casey Station. Chemosphere, 2006, 65, 294-309.	8.2	50
63	Grain size of activated carbon, and untreated and modified granular clinoptilolite under freeze-thaw: applications to permeable reactive barriers. Polar Record, 2006, 42, 121-126.	0.8	20
64	Late Pleistocene and Holocene history of Lake Terrasovoje, Amery Oasis, East Antarctica, and its climatic and environmental implications. Journal of Paleolimnology, 2004, 32, 321-339.	1.6	60
65	The diatom flora and limnology of lakes in the Amery Oasis, East Antarctica. Polar Biology, 2004, 27, 513.	1.2	38
66	The Holocene evolution and palaeosalinity history of Beall Lake, Windmill Islands (East Antarctica) using an expanded diatom-based weighted averaging model. Palaeogeography, Palaeoclimatology, Palaeoecology, 2004, 208, 121-140.	2.3	27
67	Soil phosphorus enhancement below stormwater outlets in urban bushland: spatial and temporal changes and the relationship with invasive plants. Soil Research, 2004, 42, 197.	1.1	28
68	Colonization, succession, and extinction of marine floras during a glacial cycle: A case study from the Windmill Islands (east Antarctica) using biomarkers. Paleoceanography, 2003, 18, n/a-n/a.	3.0	37
69	Palaeoclimatic significance of late Quaternary diatom assemblages from southern Windmill Islands, East Antarctica. Palaeogeography, Palaeoclimatology, Palaeoecology, 2003, 195, 261-280.	2.3	36
70	Late Quaternary aeolian dunes on the presently humid Blue Mountains, Eastern Australia. Quaternary International, 2003, 108, 13-32.	1.5	53
71	Glacial sediment provenance, dispersal and deposition, Vestfold Hills, East Antarctica. Antarctic Science, 2003, 15, 259-269.	0.9	9
72	Algae River: an extensive drainage system in the Bunger Hills, East Antarctica. Polar Record, 2002, 38, 141-152.	0.8	15

#	Article	IF	CITATIONS
73	Late Quaternary environment of southern Windmill Islands, East Antarctica. Antarctic Science, 2002, 14, 385-394.	0.9	29
74	An analysis of the limnology and sedimentary diatom flora of fourteen lakes and ponds from the Windmill Islands, East Antarctica. Antarctic Science, 2001, 13, 410-419.	0.9	27
75	Were the Larsemann Hills ice-free through the Last Glacial Maximum?. Antarctic Science, 2001, 13, 440-454.	0.9	158
76	Management and remediation of contaminated sites at Casey Station, Antarctica. Polar Record, 2001, 37, 199-214.	0.8	160
77	Last glaciation of Vestfold Hills: extension of the East Antarctic ice sheet or lateral expansion of SÃ,rsdal Glacier?. Polar Record, 1997, 33, 5-12.	0.8	10
78	Blanketing snow and ice; constraints on radiocarbon dating deglaciation in East Antarctic oases. Antarctic Science, 1997, 9, 336-346.	0.9	25
79	Reconstruction of ice flow across the Bunger Hills, East Antarctica. Antarctic Science, 1997, 9, 347-354.	0.9	11
80	Composition, distribution and origin of surficial salts in the Vestfold Hills, East Antarctica. Antarctic Science, 1996, 8, 73-84.	0.9	34
81	Glacial Crooked Lake, Vestfold Hills, East Antarctica. Polar Record, 1996, 32, 19-24.	0.8	4
82	Derived constituents in the glacial sediments of the Vestfold Hills, East Antarctica. Quaternary Science Reviews, 1994, 13, 301-307.	3.0	11
83	Changes in the Ice Boundary of the Vestfold Hills, East Antarctica, 1947 to 1990. Geographical Research, 1993, 31, 49-61.	0.6	4
84	Ice-damming and fluvial erosion in the Vestfold Hills, East Antarctica. Antarctic Science, 1992, 4, 227-234.	0.9	14
85	Aspects of the design and calibration of a portable flume. Soil and Tillage Research, 1988, 1, 297-312.	0.4	3
86	Removal of copper and zinc from ground water by granular zero-valent iron: a mechanistic study. Separation Science and Technology, 0, , 150623131830009.	2.5	1