Ryuji Morizane

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2575418/publications.pdf

Version: 2024-02-01

331670 377865 3,630 37 21 34 h-index citations g-index papers 38 38 38 4538 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Nephron organoids derived from human pluripotent stem cells model kidney development and injury. Nature Biotechnology, 2015, 33, 1193-1200.	17.5	694
2	Modelling kidney disease with CRISPR-mutant kidney organoids derived from human pluripotent epiblast spheroids. Nature Communications, 2015, 6, 8715.	12.8	571
3	Flow-enhanced vascularization and maturation of kidney organoids in vitro. Nature Methods, 2019, 16, 255-262.	19.0	559
4	Prediction of DNA Repair Inhibitor Response in Short-Term Patient-Derived Ovarian Cancer Organoids. Cancer Discovery, 2018, 8, 1404-1421.	9.4	311
5	Rapid and Efficient Differentiation of Human Pluripotent Stem Cells into Intermediate Mesoderm That Forms Tubules Expressing Kidney Proximal Tubular Markers. Journal of the American Society of Nephrology: JASN, 2014, 25, 1211-1225.	6.1	271
6	Generation of nephron progenitor cells and kidney organoids from human pluripotent stem cells. Nature Protocols, 2017, 12, 195-207.	12.0	160
7	Interleukin- $1\hat{l}^2$ Activates a MYC-Dependent Metabolic Switch in Kidney Stromal Cells Necessary for Progressive Tubulointerstitial Fibrosis. Journal of the American Society of Nephrology: JASN, 2018, 29, 1690-1705.	6.1	152
8	Kidney Organoids: A Translational Journey. Trends in Molecular Medicine, 2017, 23, 246-263.	6.7	114
9	Differentiation of murine embryonic stem and induced pluripotent stem cells to renal lineage in vitro. Biochemical and Biophysical Research Communications, 2009, 390, 1334-1339.	2.1	99
10	The NIH Somatic Cell Genome Editing program. Nature, 2021, 592, 195-204.	27.8	84
11	Proximal tubule ATR regulates DNA repair to prevent maladaptive renal injury responses. Journal of Clinical Investigation, 2019, 129, 4797-4816.	8.2	73
12	The role of microRNA-145 in human embryonic stem cell differentiation into vascular cells. Atherosclerosis, 2011, 219, 468-474.	0.8	57
13	miR-34c attenuates epithelial-mesenchymal transition and kidney fibrosis with ureteral obstruction. Scientific Reports, 2014, 4, 4578.	3.3	54
14	Modeling injury and repair in kidney organoids reveals that homologous recombination governs tubular intrinsic repair. Science Translational Medicine, 2022, 14, eabj4772.	12.4	50
15	Kidney Specific Protein-Positive Cells Derived from Embryonic Stem Cells Reproduce Tubular Structures In Vitro and Differentiate into Renal Tubular Cells. PLoS ONE, 2013, 8, e64843.	2.5	42
16	Induction of human pluripotent stem cells into kidney tissues by synthetic mRNAs encoding transcription factors. Scientific Reports, 2019, 9, 913.	3.3	40
17	Generation of kidney tubular organoids from human pluripotent stem cells. Scientific Reports, 2016, 6, 38353.	3.3	36
18	Concise Review: Kidney Generation with Human Pluripotent Stem Cells. Stem Cells, 2017, 35, 2209-2217.	3.2	35

#	Article	lF	Citations
19	Kidney organoids in translational medicine: Disease modeling and regenerative medicine. Developmental Dynamics, 2020, 249, 34-45.	1.8	33
20	Meclizine Preconditioning Protects the Kidney Against Ischemia–Reperfusion Injury. EBioMedicine, 2015, 2, 1090-1101.	6.1	32
21	Selective depletion of mouse kidney proximal straight tubule cells causes acute kidney injury. Transgenic Research, 2012, 21, 51-62.	2.4	24
22	Epigenetic transcriptional reprogramming by WT1 mediates a repair response during podocyte injury. Science Advances, 2020, 6, eabb5460.	10.3	19
23	3D kidney organoids for bench-to-bedside translation. Journal of Molecular Medicine, 2021, 99, 477-487.	3.9	19
24	A case of atypical POEMS syndrome without polyneuropathy. European Journal of Haematology, 2008, 80, 452-455.	2.2	13
25	Kidney organoids: a pioneering model for kidney diseases. Translational Research, 2022, 250, 1-17.	5.0	12
26	Renal amyloidosis caused by apolipoprotein A-II without a genetic mutation in the coding sequence. Clinical and Experimental Nephrology, 2011, 15, 774-779.	1.6	11
27	CRISPR/Cas9â€based Targeted Genome Editing for the Development of Monogenic Diseases Models with Human Pluripotent Stem Cells. Current Protocols in Stem Cell Biology, 2018, 45, e50.	3.0	11
28	Directed Differentiation of Pluripotent Stem Cells into Kidney. Biomarker Insights, 2015, 10s1, BMI.S20055.	2.5	10
29	miR-363 induces transdifferentiation of human kidney tubular cells to mesenchymal phenotype. Clinical and Experimental Nephrology, 2016, 20, 394-401.	1.6	9
30	MPO-ANCA associated crescentic glomerulonephritis with numerous immune complexes: case report. BMC Nephrology, 2012, 13, 32.	1.8	8
31	Bioengineered Kidney Models: Methods and Functional Assessments. Function, 2021, 2, zqab026.	2.3	8
32	Kidney development to kidney organoids and back again. Seminars in Cell and Developmental Biology, 2022, 127, 68-76.	5.0	6
33	Modelling diabetic vasculopathy with human vessel organoids. Nature Reviews Nephrology, 2019, 15, 258-260.	9.6	5
34	Regenerative Medicine, Disease Modeling, and Drug Discovery in Human Pluripotent Stem Cell-derived Kidney Tissue. European Medical Journal Reproductive Health, 2017, 3, 57-67.	1.0	4
35	Organoids for modeling kidney disease. , 2018, , 227-245.		2
36	The application of iPSC-derived kidney organoids and genome editing in kidney disease modeling. , 2022 , , $111-136$.		2

#	Article	IF	CITATIONS
37	Revealing potential cardiac manifestation of ADPKD using iPS cell-derived cardiomyocytes. EBioMedicine, 2019, 40, 19-20.	6.1	0