## List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2575360/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Rheology of Poly(glycidyl methacrylate) Macromolecular Nano Assemblies. Polymers, 2022, 14, 455.                                                                                                                                                          | 4.5 | 3         |
| 2  | Melting Temperature Depression of Polymer Single Crystals: Application to the Eco-Design of<br>Tie-Layers in Polyolefinic-Based Multilayered Films. Polymers, 2022, 14, 1622.                                                                             | 4.5 | 2         |
| 3  | Biofilm mechanics in an extremely acidic environment: microbiological significance. Soft Matter, 2021, 17, 3672-3680.                                                                                                                                     | 2.7 | 5         |
| 4  | Revisiting Polymer–Particle Interaction in PEO Solutions. Langmuir, 2021, 37, 3808-3816.                                                                                                                                                                  | 3.5 | 6         |
| 5  | A computer simulation of the effect of temperature on melt chain dimensions of random short chain branched polyethylene. Polymer, 2021, 225, 123772.                                                                                                      | 3.8 | 1         |
| 6  | Poly(glycidyl methacrylate) macromolecular assemblies as biocompatible nanocarrier for the antimicrobial lysozyme. International Journal of Pharmaceutics, 2021, 603, 120695.                                                                             | 5.2 | 5         |
| 7  | Organocatalyzed Polymerization of PET- <i>mb</i> -poly(oxyhexane) Copolymers and Their Self-Assembly<br>into Double Crystalline Superstructures. Macromolecules, 2019, 52, 6834-6848.                                                                     | 4.8 | 15        |
| 8  | Hydrodynamic and Electrophoretic Properties of Trastuzumab/HER2 Extracellular Domain Complexes<br>as Revealed by Experimental Techniques and Computational Simulations. International Journal of<br>Molecular Sciences, 2019, 20, 1076.                   | 4.1 | 5         |
| 9  | Heterobimetallic aluminate derivatives with bulky phenoxide ligands: a catalyst for selective vinyl polymerization. Dalton Transactions, 2019, 48, 6435-6444.                                                                                             | 3.3 | 11        |
| 10 | PET- <i>ran</i> -PLA Partially Degradable Random Copolymers Prepared by Organocatalysis: Effect of<br>Poly( <scp> </scp> -lactic acid) Incorporation on Crystallization and Morphology. ACS Sustainable<br>Chemistry and Engineering, 2019, 7, 8647-8659. | 6.7 | 28        |
| 11 | Predicting experimental results for polyethylene by computer simulation. European Polymer Journal, 2018, 99, 298-331.                                                                                                                                     | 5.4 | 47        |
| 12 | Competition between supernucleation and plasticization in the crystallization and rheological<br>behavior of PCL/CNT-based nanocomposites and nanohybrids. Journal of Polymer Science, Part B:<br>Polymer Physics, 2017, 55, 1310-1325.                   | 2.1 | 15        |
| 13 | Molecular and hydrodynamic properties of human epidermal growth factor receptor HER2<br>extracellular domain and its homodimer: Experiments and multi-scale simulations. Biochimica Et<br>Biophysica Acta - General Subjects, 2017, 1861, 2406-2416.      | 2.4 | 7         |
| 14 | Mapping the Mechanical Properties of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Banded<br>Spherulites by Nanoindentation. Polymers, 2016, 8, 358.                                                                                                       | 4.5 | 6         |
| 15 | Coarse-grained simulations on the crystallization, melting and annealing processes of short chain branched polyolefins. European Polymer Journal, 2016, 85, 478-488.                                                                                      | 5.4 | 14        |
| 16 | New habits in branched polyethylene single crystals. European Polymer Journal, 2016, 80, 169-174.                                                                                                                                                         | 5.4 | 5         |
| 17 | A new insight into the conformation and melt dynamics of hydrogenated polybutadiene as revealed by computer simulations. Soft Matter, 2016, 12, 3929-3936.                                                                                                | 2.7 | 8         |
| 18 | Evidences of Changes in Surface Electrostatic Charge Distribution during Stabilization of HPV16<br>Virus-Like Particles. PLoS ONE, 2016, 11, e0149009.                                                                                                    | 2.5 | 5         |

| #  | Article                                                                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | The influence of short-chain branching on the morphology and structure of polyethylene single crystals. Journal of Polymer Science, Part B: Polymer Physics, 2015, 53, 1751-1762.                                                                                             | 2.1 | 11        |
| 20 | Molecular Dynamics Simulations for the Description of Experimental Molecular Conformation, Melt<br>Dynamics, and Phase Transitions in Polyethylene. Macromolecules, 2015, 48, 5016-5027.                                                                                      | 4.8 | 76        |
| 21 | Study of the effect of the molecular architecture of the components on the melt rheological properties of polyethylene blends. Journal of Polymer Research, 2015, 22, 1.                                                                                                      | 2.4 | 5         |
| 22 | Computer simulations of the early stages of crystal nucleation of linear and short chain branched polyethylene on carbon nanotubes. European Polymer Journal, 2014, 56, 194-204.                                                                                              | 5.4 | 15        |
| 23 | Strong influence of branching on the early stage of nucleation and crystal formation of fast cooled ultralong n-alkanes as revealed by computer simulation. European Polymer Journal, 2014, 50, 190-199.                                                                      | 5.4 | 22        |
| 24 | Effect of short chain branching in molecular dimensions and Newtonian viscosity of<br>ethylene/1-hexene copolymers: matching conformational and rheological experimental properties and<br>atomistic simulations. Rheologica Acta, 2014, 53, 1-13.                            | 2.4 | 17        |
| 25 | Influence of Chain Branching and Molecular Weight on Melt Rheology and Crystallization of<br>Polyethylene/Carbon Nanotube Nanocomposites. Macromolecules, 2014, 47, 5668-5681.                                                                                                | 4.8 | 49        |
| 26 | Microstructure and properties of branched polyethylene: Application of a threeâ€phase structural<br>model. Journal of Applied Polymer Science, 2013, 128, 1871-1878.                                                                                                          | 2.6 | 12        |
| 27 | Effect of high molar mass species on linear viscoelastic properties of polyethylene melts. European<br>Polymer Journal, 2013, 49, 2748-2758.                                                                                                                                  | 5.4 | 8         |
| 28 | Structural Insights on the Plant Salt-Overly-Sensitive 1 (SOS1) Na+/H+ Antiporter. Journal of<br>Molecular Biology, 2012, 424, 283-294.                                                                                                                                       | 4.2 | 49        |
| 29 | Assessment of entanglement features and dynamics from atomistic simulations and experiments in linear and short chain branched polyolefins. Soft Matter, 2012, 8, 6256.                                                                                                       | 2.7 | 17        |
| 30 | Effect of molecular weight distribution on Newtonian viscosity of linear polyethylene. Rheologica<br>Acta, 2012, 51, 81-87.                                                                                                                                                   | 2.4 | 23        |
| 31 | Eliminating sharkskin distortion in polyethylene extrusion via a molecular route. Journal of<br>Rheology, 2011, 55, 855-873.                                                                                                                                                  | 2.6 | 11        |
| 32 | A three-phase microstructural model to explain the mechanical relaxations of branched polyethylene:<br>a DSC, WAXD and DMTA combined study. Colloid and Polymer Science, 2011, 289, 257-268.                                                                                  | 2.1 | 24        |
| 33 | Molecular architecture and linear viscoelasticity of homogeneous ethylene/styrene copolymers.<br>Rheologica Acta, 2011, 50, 207-220.                                                                                                                                          | 2.4 | 7         |
| 34 | Size and conformational features of ErbB2 and ErbB3 receptors: a TEM and DLS comparative study.<br>European Biophysics Journal, 2011, 40, 835-842.                                                                                                                            | 2.2 | 11        |
| 35 | Role of the interface in the meltâ€rheology properties of linear lowâ€density polyethylene/lowâ€density polyethylene/lowâ€density polyethylene blends: Effect of the molecular architecture of the dispersed phase. Journal of Applied Polymer Science, 2011, 119, 3217-3226. | 2.6 | 8         |
| 36 | The role of the interface in melt linear viscoelastic properties of LLDPE/LDPE blends: Effect of the molecular architecture of the matrix. Journal of Applied Polymer Science, 2009, 114, 420-429.                                                                            | 2.6 | 12        |

| #  | Article                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Flow-induced crystallization regimes and rheology of isotactic polypropylene. Journal of Thermal<br>Analysis and Calorimetry, 2009, 98, 655-666.                                                                                   | 3.6 | 47        |
| 38 | Rheology, Processing, Tensile Properties, and Crystallization of Polyethylene/Carbon Nanotube<br>Nanocomposites. Macromolecules, 2009, 42, 4719-4727.                                                                              | 4.8 | 153       |
| 39 | Viscoelasticity and macromolecular topology in single-site catalyzed polyethylene. Journal of<br>Materials Science, 2008, 43, 1745-1748.                                                                                           | 3.7 | 5         |
| 40 | Structure and Physical Properties of Polyethylenes obtained from Dual Catalysis Process. Polymer Bulletin, 2008, 60, 331-342.                                                                                                      | 3.3 | 9         |
| 41 | Entanglement network and relaxation temperature dependence of singleâ€site catalyzed<br>ethylene/1â€hexene copolymers. Journal of Applied Polymer Science, 2008, 109, 1564-1569.                                                   | 2.6 | 13        |
| 42 | Highly active ethylene/hydroxyl comonomers copolymerization using metallocene catalysts. Journal of Applied Polymer Science, 2008, 109, 1529-1534.                                                                                 | 2.6 | 10        |
| 43 | Three-dimensional modelling of flow curves in co-rotating twin-screw extruder elements. Journal of<br>Materials Processing Technology, 2008, 197, 221-224.                                                                         | 6.3 | 24        |
| 44 | Entanglement Relaxation Time in Polyethylene: Simulation versus Experimental Data. Macromolecules,<br>2008, 41, 2959-2962.                                                                                                         | 4.8 | 46        |
| 45 | Molecular structure and properties of ethyleneâ€ <i>co</i> â€styrene polymers obtained from<br>[norbornaneâ€7,7â€bis(1â€indenyl)]titanium dichloride catalyst system. Journal of Applied Polymer Science,<br>2007, 106, 1421-1430. | 2.6 | 5         |
| 46 | The unit cell expansion of branched polyethylene as detected by Raman spectroscopy: an experimental and simulation approach. Journal of Materials Science, 2007, 42, 1046-1049.                                                    | 3.7 | 23        |
| 47 | meso-[Norbornane-7,7-bis(indenyl)]titanium Dichloride:Â A Highly Active Catalyst for Ethyleneâ^'Styrene<br>Copolymerization. Macromolecules, 2006, 39, 7479-7482.                                                                  | 4.8 | 21        |
| 48 | Melt flow index on high molecular weight polyethylene: A comparative study of experiments and simulation. Journal of Materials Processing Technology, 2006, 174, 171-177.                                                          | 6.3 | 13        |
| 49 | Viscoelastic behaviour during the crystallisation of isotactic polypropylene. Journal of Materials Science, 2006, 41, 3899-3905.                                                                                                   | 3.7 | 5         |
| 50 | Rheological behaviour of LDPE/EVAc blends. II. Linear viscoelasticity and extrusion properties. Journal of Materials Science, 2006, 41, 4814-4822.                                                                                 | 3.7 | 6         |
| 51 | Non-linear changes in the specific volume of the amorphous phase of poly(4-methyl-1-pentene);<br>Kauzmann curves, inverse melting, fragility. Polymer, 2006, 47, 5555-5565.                                                        | 3.8 | 9         |
| 52 | Synthesis and properties of ethylene/styrene copolymers produced by metallocene catalysts. Journal of Applied Polymer Science, 2006, 102, 3420-3429.                                                                               | 2.6 | 10        |
| 53 | Processability of a metallocene-catalyzed linear PE improved by blending with a small amount of UHMWPE. Journal of Polymer Science, Part B: Polymer Physics, 2005, 43, 2963-2971.                                                  | 2.1 | 29        |
| 54 | Rheology and reptation of linear polymers. Ultrahigh molecular weight chain dynamics in the melt.<br>Journal of Rheology, 2004, 48, 663-678.                                                                                       | 2.6 | 129       |

| #  | Article                                                                                                                                                                      | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Elimination of Extrudate Distortions in Metallocene-Catalyzed Polyethylene. Macromolecules, 2004,<br>37, 681-683.                                                            | 4.8 | 11        |
| 56 | Title is missing!. Journal of Materials Science, 2003, 38, 4757-4764.                                                                                                        | 3.7 | 14        |
| 57 | Rheological features and molecular architecture of polyethylenes. Polymer Bulletin, 2003, 50, 197-204.                                                                       | 3.3 | 11        |
| 58 | Novel features of the rheological behaviour of metallocene catalysed atactic polypropylene. Polymer, 2003, 44, 1401-1407.                                                    | 3.8 | 19        |
| 59 | Phase morphology and melt viscoelastic properties in blends of ethylene/vinyl acetate copolymer and metallocene-catalysed linear polyethylene. Polymer, 2003, 44, 2911-2918. | 3.8 | 44        |
| 60 | On the processability of metallocene-catalysed polyethylene: effects of blending with ethylene–vinyl acetate copolymer. Polymer, 2003, 44, 1589-1594.                        | 3.8 | 17        |
| 61 | Model linear metallocene-catalyzed polyolefins: Melt rheological behavior and molecular dynamics.<br>Journal of Rheology, 2003, 47, 1505-1521.                               | 2.6 | 21        |
| 62 | Effect of long chain branching on linear-viscoelastic melt properties of polyolefins. E-Polymers, 2002, 2, .                                                                 | 3.0 | 24        |
| 63 | Title is missing!. Journal of Materials Science, 2002, 37, 3415-3421.                                                                                                        | 3.7 | 10        |
| 64 | Rheological behaviour of LDPE/EVA-c blends. I. On the effect of vinyl acetate comonomer in EVA copolymers. Polymer, 2001, 42, 8093-8101.                                     | 3.8 | 25        |
| 65 | New aspects on the rheological behaviour of metallocene catalysed polyethylenes. Polymer, 2001, 42, 9713-9721.                                                               | 3.8 | 56        |
| 66 | Rheology of metallocene catalysed polyethylenes: Energy consumption perspective. Macromolecular<br>Symposia, 2000, 152, 15-27.                                               | 0.7 | 2         |
| 67 | The effect of chain architecture on "sharkskin―of metallocene polyethylenes. Macromolecular Rapid<br>Communications, 2000, 21, 973-978.                                      | 3.9 | 26        |
| 68 | Rheology of metallocene-catalyzed monomodal and bimodal polyethylenes. Polymer Engineering and Science, 1999, 39, 2292-2303.                                                 | 3.1 | 33        |
| 69 | Rheological criteria to characterize metallocene catalyzed polyethylenes. Macromolecular Chemistry and Physics, 1999, 200, 2257-2268.                                        | 2.2 | 80        |
| 70 | Small-Amplitude Oscillatory Shear Flow Measurements as a Tool To Detect Very Low Amounts of Long<br>Chain Branching in Polyethylenes. Macromolecules, 1998, 31, 3639-3647.   | 4.8 | 222       |
| 71 | Rheological behaviour of metallocene catalysed high density polytheylene blends. Polymer, 1997, 38, 589-594.                                                                 | 3.8 | 45        |
| 72 | Comparison of the Rheological Properties of Metallocene-Catalyzed and Conventional High-Density<br>Polyethylenes. Macromolecules, 1996, 29, 960-965.                         | 4.8 | 139       |