

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/257522/publications.pdf Version: 2024-02-01

I E VIIE

#	Article	IF	CITATIONS
1	Foliar carbon dot amendment modulates carbohydrate metabolism, rhizospheric properties and drought tolerance in maize seedling. Science of the Total Environment, 2022, 809, 151105.	8.0	38
2	Foliar Application with Iron Oxide Nanomaterials Stimulate Nitrogen Fixation, Yield, and Nutritional Quality of Soybean. ACS Nano, 2022, 16, 1170-1181.	14.6	56
3	Mechanisms of growth-promotion and Se-enrichment in <i>Brassica chinensis</i> L. by selenium nanomaterials: beneficial rhizosphere microorganisms, nutrient availability, and photosynthesis. Environmental Science: Nano, 2022, 9, 302-312.	4.3	18
4	Foliar-applied cerium oxide nanomaterials improve maize yield under salinity stress: Reactive oxygen species homeostasis and rhizobacteria regulation. Environmental Pollution, 2022, 299, 118900.	7.5	35
5	Multiomics understanding of improved quality in cherry radish (Raphanus sativus L. var. radculus) Tj ETQq1 1 0.7 153712.	84314 rgf 8.0	3T /Overloc 27
6	Nanomaterial-induced modulation of hormonal pathways enhances plant cell growth. Environmental Science: Nano, 2022, 9, 1578-1590.	4.3	8
7	Molecular Mechanisms of Early Flowering in Tomatoes Induced by Manganese Ferrite (MnFe ₂ O ₄) Nanomaterials. ACS Nano, 2022, 16, 5636-5646.	14.6	26
8	Triiron Tetrairon Phosphate (Fe7(PO4)6) Nanomaterials Enhanced Flavonoid Accumulation in Tomato Fruits. Nanomaterials, 2022, 12, 1341.	4.1	5
9	Selenium content and nutritional quality of Brassica chinensis L enhanced by selenium engineered nanomaterials: The role of surface charge. Environmental Pollution, 2022, 308, 119582.	7.5	9
10	CuO nanoparticles doping recovered the photocatalytic antialgal activity of graphitic carbon nitride. Journal of Hazardous Materials, 2021, 403, 123621.	12.4	35
11	The molecular mechanisms of silica nanomaterials enhancing the rice (Oryza sativa L.) resistance to planthoppers (Nilaparvata lugens Stal). Science of the Total Environment, 2021, 767, 144967.	8.0	23
12	Downregulation of the photosynthetic machinery and carbon storage signaling pathways mediate La2O3 nanoparticle toxicity on radish taproot formation. Journal of Hazardous Materials, 2021, 411, 124971.	12.4	23
13	Elemental Sulfur Nanoparticles Enhance Disease Resistance in Tomatoes. ACS Nano, 2021, 15, 11817-11827.	14.6	60
14	Nitrogen-Doped Carbon Dots Increased Light Conversion and Electron Supply to Improve the Corn Photosystem and Yield. Environmental Science & Technology, 2021, 55, 12317-12325.	10.0	67
15	Nanosilicon enhances maize resistance against oriental armyworm (Mythimna separata) by activating the biosynthesis of chemical defenses. Science of the Total Environment, 2021, 778, 146378.	8.0	28
16	Metallic oxide nanomaterials act as antioxidant nanozymes in higher plants: Trends, meta-analysis, and prospect. Science of the Total Environment, 2021, 780, 146578.	8.0	38
17	Cell Walls Are Remodeled to Alleviate nY ₂ O ₃ Cytotoxicity by Elaborate Regulation of <i>de Novo</i> Synthesis and Vesicular Transport. ACS Nano, 2021, 15, 13166-13177.	14.6	13
18	Copper nanoclusters promote tomato (Solanum lycopersicum L.) yield and quality through improving photosynthesis and roots growth. Environmental Pollution, 2021, 289, 117912.	7.5	19

Le Yue

#	Article	IF	CITATIONS
19	Silica nanomaterials and earthworms synergistically regulate maize root metabolite profiles <i>via</i> promoting soil Si bioavailability. Environmental Science: Nano, 2021, 8, 3865-3878.	4.3	2
20	Dose-dependent effects of CeO ₂ nanomaterials on tomato plant chemistry and insect herbivore resistance. Environmental Science: Nano, 2021, 8, 3577-3589.	4.3	10
21	Nitrogen-doped carbon dots alleviate the damage from tomato bacterial wilt syndrome: systemic acquired resistance activation and reactive oxygen species scavenging. Environmental Science: Nano, 2021, 8, 3806-3819.	4.3	12
22	Fluorescent g-C3N4 nanosheets enhanced photosynthetic efficiency in maize. NanoImpact, 2021, 24, 100363.	4.5	7
23	Photosynthetic response mechanisms in typical C3 and C4 plants upon La ₂ O ₃ nanoparticle exposure. Environmental Science: Nano, 2020, 7, 81-92.	4.3	39
24	CeO ₂ Nanoparticles Regulate the Propagation of Antibiotic Resistance Genes by Altering Cellular Contact and Plasmid Transfer. Environmental Science & Technology, 2020, 54, 10012-10021.	10.0	73
25	Phosphate induced surface transformation alleviated the cytotoxicity of Y2O3 nanoparticles to tobacco BY-2 cells. Science of the Total Environment, 2020, 732, 139276.	8.0	8
26	Nano-enabled improvements of growth and nutritional quality in food plants driven by rhizosphere processes. Environment International, 2020, 142, 105831.	10.0	106
27	Uptake, Transport, and Transformation of CeO ₂ Nanoparticles by Strawberry and Their Impact on the Rhizosphere Bacterial Community. ACS Sustainable Chemistry and Engineering, 2020, 8, 4792-4800.	6.7	42
28	The effect of biochar amendment on N-cycling genes in soils: A meta-analysis. Science of the Total Environment, 2019, 696, 133984.	8.0	85
29	Algae response to engineered nanoparticles: current understanding, mechanisms and implications. Environmental Science: Nano, 2019, 6, 1026-1042.	4.3	96
30	Early development of apoplastic barriers and molecular mechanisms in juvenile maize roots in response to La2O3 nanoparticles. Science of the Total Environment, 2019, 653, 675-683.	8.0	36
31	The effect of biochar nanoparticles on rice plant growth and the uptake of heavy metals: Implications for agronomic benefits and potential risk. Science of the Total Environment, 2019, 656, 9-18.	8.0	99
32	Processes and mechanisms of photosynthesis augmented by engineered nanomaterials. Environmental Chemistry, 2019, 16, 430.	1.5	26
33	Carotenoid and superoxide dismutase are the most effective antioxidants participating in ROS scavenging in phenanthrene accumulated wheat leaf. Chemosphere, 2018, 197, 513-525.	8.2	83
34	Apoplastic and symplastic uptake of phenanthrene in wheat roots. Environmental Pollution, 2018, 233, 331-339.	7.5	51
35	Interaction of CuO nanoparticles with duckweed (Lemna minor. L): Uptake, distribution and ROS production sites. Environmental Pollution, 2018, 243, 543-552.	7.5	41
36	Molecular mechanisms of maize seedling response to La ₂ O ₃ NP exposure: water uptake, aquaporin gene expression and signal transduction. Environmental Science: Nano, 2017, 4, 843-855.	4.3	51

Le Yue

#	Article	IF	CITATIONS
37	Phenanthrene-responsive microRNAs and their targets in wheat roots. Chemosphere, 2017, 186, 588-598.	8.2	18
38	Phenanthrene-triggered Chlorosis is caused by elevated Chlorophyll degradation and leaf moisture. Environmental Pollution, 2017, 220, 1311-1321.	7.5	56
39	Proteomic analysis of plasma membrane proteins in wheat roots exposed to phenanthrene. Environmental Science and Pollution Research, 2016, 23, 10863-10871.	5.3	27
40	Response of uptake and translocation of phenanthrene to nitrogen form in lettuce and wheat seedlings. Environmental Science and Pollution Research, 2015, 22, 6280-6287.	5.3	33
41	Cytoplasmic pH-Stat during Phenanthrene Uptake by Wheat Roots: A Mechanistic Consideration. Environmental Science & Technology, 2015, 49, 6037-6044.	10.0	38
42	Nano-TiO ₂ retarded fetal development by inhibiting transplacental transfer of thyroid hormones in rat. Environmental Science: Nano, 0, , .	4.3	0