List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2574506/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The cAMP Inducers Modify N-Acetylaspartate Metabolism in Wistar Rat Brain. Antioxidants, 2021, 10, 1404.	2.2	1
2	Role of Energy Metabolism in the Progression of Neuroblastoma. International Journal of Molecular Sciences, 2021, 22, 11421.	1.8	4
3	Neither Excessive Nitric Oxide Accumulation nor Acute Hyperglycemia Affects the N-Acetylaspartate Network in Wistar Rat Brain Cells. International Journal of Molecular Sciences, 2020, 21, 8541.	1.8	4
4	The Impact of Acetyl-CoA and Aspartate Shortages on the N-Acetylaspartate Level in Different Models of Cholinergic Neurons. Antioxidants, 2020, 9, 522.	2.2	7
5	Expression Profiles of Genes Encoding Cornified Envelope Proteins in Atopic Dermatitis and Cutaneous T-Cell Lymphomas. Nutrients, 2020, 12, 862.	1.7	17
6	Purinergic signalling in B cells. Acta Biochimica Polonica, 2018, 65, 1-7.	0.3	25
7	A data mining paradigm for identifying key factors in biological processes using gene expression data. Scientific Reports, 2018, 8, 9083.	1.6	14
8	The Level of TWIST1 expression determines the response of colon cancer cells to mitogen-activated protein kinases inhibitors. Saudi Journal of Gastroenterology, 2018, 24, 37.	0.5	2
9	Altered Expression of Genes Encoding Cornulin and Repetin in Atopic Dermatitis. International Archives of Allergy and Immunology, 2017, 172, 11-19.	0.9	22
10	Expression of Cornified Envelope Proteins in Skin and Its Relationship with Atopic Dermatitis Phenotype. Acta Dermato-Venereologica, 2017, 97, 36-41.	0.6	30
11	Overexpression of ID1 reverses the repression of human dental pulp stem cells differentiation induced by TWIST1 silencing. Acta Biochimica Polonica, 2017, 64, 615-619.	0.3	1
12	Gene expression profile of collagen types, osteopontin in the tympanic membrane of patients with tympanosclerosis. Advances in Clinical and Experimental Medicine, 2017, 26, 961-966.	0.6	12
13	Suppression of ID1 expression in colon cancer cells increases sensitivity to 5-fluorouracil. Acta Biochimica Polonica, 2017, 64, 315-322.	0.3	8
14	Association of a Single Nucleotide Polymorphism in a Late Cornified Envelope-like Proline-rich 1 Gene (LELP1) with Atopic Dermatitis. Acta Dermato-Venereologica, 2016, 96, 459-463.	0.6	15
15	Suppression of TWIST1 enhances the sensitivity of colon cancer cells to 5-fluorouracil. International Journal of Biochemistry and Cell Biology, 2016, 78, 268-278.	1.2	21
16	Differential effects of lipopolysaccharide on energy metabolism in murine microglial N9 and cholinergic <scp>SN</scp> 56 neuronal cells. Journal of Neurochemistry, 2015, 133, 284-297.	2.1	23
17	AβPP-Transgenic 2576 Mice Mimic Cell Type-Specific Aspects of Acetyl-CoA-Linked Metabolic Deficits in Alzheimer's Disease. Journal of Alzheimer's Disease, 2015, 48, 1083-1094.	1.2	11
18	Differentiation of highâ€risk stage I and II colon tumors based on evaluation of <i>CAV1</i> gene expression. Journal of Surgical Oncology, 2015, 112, 408-414.	0.8	6

#	Article	IF	CITATIONS
19	Retinoic acid as a therapeutic option in Alzheimer's disease: a focus on cholinergic restoration. Expert Review of Neurotherapeutics, 2015, 15, 239-249.	1.4	17
20	Expression of TNF-α, OPC, IL-1β and the presence of the measles virus RNA in the stapes of the patients with otosclerosis. European Archives of Oto-Rhino-Laryngology, 2015, 272, 1907-1912.	0.8	8
21	<i>Id1</i> Expression Level Determines the Differentiation of Human Dental Pulp Stem Cells. Journal of Dental Research, 2014, 93, 576-581.	2.5	7
22	Altered response of fibroblasts from human tympanosclerotic membrane to interacting mast cells: Implication for tissue remodeling. International Journal of Biochemistry and Cell Biology, 2014, 57, 35-44.	1.2	4
23	Morphological Alterations in the Tympanic Membrane Affected by Tympanosclerosis: Ultrastructural Study. Ultrastructural Pathology, 2014, 38, 69-73.	0.4	4
24	Intracellular redistribution of acetyl-CoA, the pivotal point in differential susceptibility of cholinergic neurons and glial cells to neurodegenerative signals. Biochemical Society Transactions, 2014, 42, 1101-1106.	1.6	13
25	Acetyl-CoA the Key Factor for Survival or Death of Cholinergic Neurons in Course of Neurodegenerative Diseases. Neurochemical Research, 2013, 38, 1523-1542.	1.6	89
26	High glucose concentration impairs ATP outflow and immunoglobulin production by human peripheral B lymphocytes: Involvement of P2X7 receptor. Immunobiology, 2013, 218, 591-601.	0.8	30
27	Differential effect of adenosine receptors on growth of human colon cancer HCT 116 and HT-29 cell lines. Archives of Biochemistry and Biophysics, 2013, 533, 47-54.	1.4	20
28	High glucose impairs ATP formation on the surface of human peripheral blood B lymphocytes. International Journal of Biochemistry and Cell Biology, 2013, 45, 1246-1254.	1.2	13
29	Acetyl-CoA metabolism in amprolium-evoked thiamine pyrophosphate deficits in cholinergic SN56 neuroblastoma cells. Neurochemistry International, 2011, 59, 208-216.	1.9	20
30	Expression of Tumor Necrosis Factor-α, Interleukin-1α, Interleukin-6 and Interleukin-10 in Chronic Otitis Media with Bone Osteolysis. Orl, 2011, 73, 93-99.	0.6	35
31	Regulation of adenosine receptors expression in rat B lymphocytes by insulin. Journal of Cellular Biochemistry, 2010, 109, 396-405.	1.2	3
32	Acetylâ€CoA and acetylcholine metabolism in nerve terminal compartment of thiamine deficient rat brain. Journal of Neurochemistry, 2010, 115, 333-342.	2.1	26
33	Short-term effects of zinc on acetylcholine metabolism and viability of SN56 cholinergic neuroblastoma cells. Neurochemistry International, 2010, 56, 143-151.	1.9	24
34	Acetyl-CoA deficit in brain mitochondria in experimental thiamine deficiency encephalopathy. Neurochemistry International, 2010, 57, 851-856.	1.9	14
35	Identification of High-Risk Stage II Colorectal Tumors by Combined Analysis of the NDRG1 Gene Expression and the Depth of Tumor Invasion. Annals of Surgical Oncology, 2009, 16, 1287-1294. 	0.7	50
36	Effect of insulin and glucose on adenosine metabolizing enzymes in human B lymphocytes Acta Biochimica Polonica, 2009, 56, .	0.3	4

#	Article	IF	CITATIONS
37	High glucose suppresses expression of equilibrative nucleoside transporter 1 (ENT1) in rat cardiac fibroblasts through a mechanism dependent on PKCâ€Î¶ and MAP kinases. Journal of Cellular Physiology, 2008, 215, 151-160.	2.0	13
38	Regulation of phospholipase C-δ1 by ARGHAP6, a GTPase-activating protein for RhoA: Possible role for enhanced activity of phospholipase C in hypertension. International Journal of Biochemistry and Cell Biology, 2008, 40, 2264-2273.	1.2	9
39	Alterations of Adenine Nucleotide Metabolism and Function of Blood Platelets in Patients With Diabetes. Diabetes, 2007, 56, 462-467.	0.3	36
40	Expression Patterns of Ki-67 and Telomerase Activity in Middle Ear Cholesteatoma. Otology and Neurotology, 2007, 28, 204-207.	0.7	10
41	Different signaling pathways utilized by insulin to regulate the expression of ENT2, CNT1, CNT2 nucleoside transporters in rat cardiac fibroblasts. Archives of Biochemistry and Biophysics, 2007, 464, 344-349.	1.4	11
42	Effects of zinc on SN56 cholinergic neuroblastoma cells. Journal of Neurochemistry, 2007, 103, 972-983.	2.1	27
43	Diabetes-induced alterations of adenosine receptors expression level in rat liver. Experimental and Molecular Pathology, 2007, 83, 392-398.	0.9	24
44	Expression of adenosine receptors in cardiac fibroblasts as a function of insulin and glucose level. Archives of Biochemistry and Biophysics, 2006, 455, 10-17.	1.4	17
45	RS-α-lipoic acid protects cholinergic cells against sodium nitroprusside and amyloid-β neurotoxicity through restoration of acetyl-CoA level. Journal of Neurochemistry, 2006, 98, 1242-1251.	2.1	19
46	Diabetes-induced decrease of adenosine kinase expression impairs the proliferation potential of diabetic rat T lymphocytes. Immunology, 2006, 118, 402-412.	2.0	48
47	Reduced ability to release adenosine by diabetic rat cardiac fibroblasts due to altered expression of nucleoside transporters. Journal of Physiology, 2006, 576, 179-189.	1.3	22
48	Phenotype-dependent susceptibility of cholinergic neuroblastoma cells to neurotoxic inputs. Metabolic Brain Disease, 2006, 21, 143-155.	1.4	45
49	Prevalence of unidirectional Na+–dependent adenosine transport and altered potential for adenosine generation in diabetic cardiac myocytes. Basic Research in Cardiology, 2006, 101, 214-222.	2.5	12
50	Cell Cycle Inhibitory Protein p27 in Human Middle Ear Cholesteatoma. Orl, 2006, 68, 296-301.	0.6	4
51	Differential effect of insulin and elevated glucose level on adenosine handling in rat T lymphocytes. Journal of Cellular Biochemistry, 2005, 96, 1296-1310.	1.2	11
52	Nerve growth factor and acetyl-L-carnitine evoked shifts in acetyl-CoA and cholinergic SN56 cell vulnerability to neurotoxic inputs. Journal of Neuroscience Research, 2005, 79, 185-192.	1.3	18
53	Effect of I-Carnitine on Acetyl-CoA Content and Activity of Blood Platelets in Healthy and Diabetic Persons. Clinical Chemistry, 2005, 51, 1673-1682.	1.5	20
54	Phenotype dependent differential effects of interleukin-1β and amyloid-β on viability and cholinergic phenotype of T17 neuroblastoma cells. Neurochemistry International, 2005, 47, 466-473.	1.9	12

#	Article	IF	CITATIONS
55	Region-Specific Alterations of Adenosine Receptors Expression Level in Kidney of Diabetic Rat. American Journal of Pathology, 2005, 167, 315-325.	1.9	68
56	Recent advances in studies on biochemical and structural properties of equilibrative and concentrative nucleoside transporters Acta Biochimica Polonica, 2005, 52, 749-758.	0.3	90
57	Recent advances in studies on biochemical and structural properties of equilibrative and concentrative nucleoside transporters. Acta Biochimica Polonica, 2005, 52, 749-58.	0.3	33
58	Differential effect of insulin and elevated glucose level on adenosine transport in rat B lymphocytes. International Immunology, 2004, 17, 145-154.	1.8	23
59	Effects of NGF on acetylcholine, acetyl-CoA metabolism, and viability of differentiated and non-differentiated cholinergic neuroblastoma cells. Journal of Neurochemistry, 2004, 90, 952-961.	2.1	21
60	Insulin and glucose induced changes in expression level of nucleoside transporters and adenosine transport in rat T lymphocytes. Biochemical Pharmacology, 2004, 68, 1309-1320.	2.0	22
61	Ubc9-induced inhibition of diadenosine triphosphate hydrolase activity of the putative tumor suppressor protein Fhit. Archives of Biochemistry and Biophysics, 2004, 428, 160-164.	1.4	26
62	K-RAS point mutation, and amplification of C-MYC and C-ERBB2 in colon adenocarcinoma. Folia Histochemica Et Cytobiologica, 2004, 42, 173-9.	0.6	8
63	Relationships between cholinergic phenotype and acetyl-CoA level in hybrid murine neuroblastoma cells of septal origin. Journal of Neuroscience Research, 2003, 73, 717-721.	1.3	17
64	Insulin induces expression of adenosine kinase gene in rat lymphocytes by signaling through the mitogen-activated protein kinase pathway. Experimental Cell Research, 2003, 286, 152-163.	1.2	24
65	The Effect of Insulin on Expression Level of Nucleoside Transporters in Diabetic Rats. Molecular Pharmacology, 2003, 63, 81-88.	1.0	46
66	Expression level of Ubc9 protein in rat tissues Acta Biochimica Polonica, 2003, 50, 1065-1073.	0.3	15
67	Isozymes delta of phosphoinositide-specific phospholipase C and their role in signal transduction in the cell Acta Biochimica Polonica, 2003, 50, 1097-1110.	0.3	36
68	Expression in Escherichia coli of human ARHGAP6 gene and purification of His-tagged recombinant protein Acta Biochimica Polonica, 2003, 50, 239-247.	0.3	6
69	Insulin restores expression of adenosine kinase in streptozotocin-induced diabetes mellitus rats. Molecular and Cellular Biochemistry, 2002, 236, 163-171.	1.4	21
70	Abnormal FHIT gene transcript and c-myc and c-erbB2 amplification in breast cancer Acta Biochimica Polonica, 2002, 49, 341-350.	0.3	3
71	Amplification of c-myc gene and overexpression of c-Myc protein in breast cancer and adjacent non-neoplastic tissue. Clinical Biochemistry, 2001, 34, 557-562.	0.8	55
72	Distribution of Fhit protein in rat tissues and its intracellular localization. Molecular and Cellular Biochemistry, 2001, 226, 49-55.	1.4	15

#	Article	IF	CITATIONS
73	Protein kinase C-gamma phorbol-binding domain involved in protein-protein interaction. Molecular and Cellular Biochemistry, 2000, 209, 69-77.	1.4	6
74	Decreased Expression of Adenosine Kinase in Streptozotocin-Induced Diabetes Mellitus Rats. Archives of Biochemistry and Biophysics, 2000, 375, 1-6.	1.4	50
75	Expression in Escherichia coli and Simple Purification of Human Fhit Protein. Protein Expression and Purification, 2000, 18, 320-326.	0.6	14
76	Phospholipase C-delta3 binds with high specificity to phosphatidylinositol 4,5-bisphosphate and phosphatidic acid in bilayer membranes. FEBS Journal, 1999, 262, 291-298.	0.2	24
77	Localization of phospholipase C delta3 in the cell and regulation of its activity by phospholipids and calcium. FEBS Journal, 1998, 257, 169-177.	0.2	29
78	Recombinant protein kinase C-γ phorbol binding domain upon microinjection blocked insulin-induced maturation ofXenopus leavisoocytes. FEBS Letters, 1998, 423, 31-34.	1.3	4
79	NMR Structure of a Protein Kinase C-γ Phorbol-Binding Domain and Study of Proteinâ^'Lipid Micelle Interactions‡. Biochemistry, 1997, 36, 10709-10717.	1.2	135
80	Phospholipase C Isoforms δ1and δ3from Human Fibroblasts. Protein Expression and Purification, 1997, 9, 262-278.	0.6	22
81	Effect of sphingomyelin and its metabolites on the activity of human recombinant PLC δ1. International Journal of Biochemistry and Cell Biology, 1997, 29, 815-828.	1.2	11
82	Regulation of phospholipase C δ1 by sphingosine. Biochimica Et Biophysica Acta - Biomembranes, 1997, 1325, 287-296.	1.4	11
83	The effect of different molecular species of sphingomyelin on phospholipase C δ1 activity. Biochimie, 1997, 79, 741-748.	1.3	6
84	Structural Requirements of Phospholipase C delta1 for Regulation by Spermine, Sphingosine and Sphingomyelin. FEBS Journal, 1997, 248, 459-465.	0.2	22
85	Purine nucleotide cycle in rat renal cortex and medulla under conditions that mimic normal and low oxygen supply. Kidney International, 1996, 50, 1195-1201.	2.6	4
86	Effects of TRH, prolactin and TSH on cell proliferation in the intermediate lobe of the rat pituitary gland. Journal of Endocrinology, 1996, 148, 193-196.	1.2	6
87	Inhibition of cGMP-Phosphodiesterase Restores the Glomerular Effects of Atrial Natriuretic Factor in Low Sodium Diet Rats. Kidney and Blood Pressure Research, 1995, 18, 254-266.	0.9	5
88	Changes in the structure of pyruvate dehydrogenase complex induced by mono- and divalent ions. International Journal of Biochemistry and Cell Biology, 1995, 27, 513-521.	1.2	5
89	The role of inositol phospholipids in the association of band 4.1 with the human erythrocyte membrane. FEBS Journal, 1993, 211, 671-681.	0.2	31
90	Inhibition of phospholipase cl̂´ by hexadecylphosphorylcholine and lysophospholipids with antitumor activity. Biochemical Pharmacology, 1993, 45, 493-497.	2.0	33

#	Article	IF	CITATIONS
91	The Regulatory Properties of Kidney Pyruvate Dehydrogenase Complex Components. Archives of Biochemistry and Biophysics, 1993, 300, 489-494.	1.4	3
92	Binding of phospholipase Cl´1 to phospholipid vesicles. Biochemical Journal, 1993, 291, 693-696.	1.7	33
93	Regulation of pyruvate dehydrogenase kinase activity from pig kidney cortex. Biochemical Journal, 1992, 288, 369-373.	1.7	14
94	The distribution of enzymes involved in purine metabolism in rat kidney. Biochimica Et Biophysica Acta - General Subjects, 1992, 1116, 309-314.	1.1	26
95	Effect of ionic strength on the regulatory properties of 2-oxoglutarate dehydrogenase complex. Biochimie, 1992, 74, 171-176.	1.3	2
96	Effect of ionic strength and pH on the activity of pyruvate dehydrogenase complex from pig kidney cortex. Archives of Biochemistry and Biophysics, 1992, 294, 44-49.	1.4	12
97	Regulation of phospholipase Cl̃´activity by sphingomyelin and sphingosine. Archives of Biochemistry and Biophysics, 1992, 297, 328-333.	1.4	53
98	Renal Handling and Metabolism of Adenosine in Diabetic Rats1. Contributions To Nephrology, 1989, 73, 52-58.	1.1	23
99	The effects of various anions and cations on the regulation of pyruvate dehydrogenase complex activity from pig kidney cortex. Biochemical Journal, 1988, 253, 819-825.	1.7	11