
Jose G Vallarino

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2574092/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	From Central to Specialized Metabolism: An Overview of Some Secondary Compounds Derived From the Primary Metabolism for Their Role in Conferring Nutritional and Organoleptic Characteristics to Fruit. Frontiers in Plant Science, 2019, 10, 835.	3.6	204
2	Ethylene is involved in strawberry fruit ripening in an organ-specific manner. Journal of Experimental Botany, 2013, 64, 4421-4439.	4.8	111
3	Allelic Variation of <i>MYB10</i> Is the Major Force Controlling Natural Variation in Skin and Flesh Color in Strawberry (<i>Fragaria</i> spp.) Fruit. Plant Cell, 2020, 32, 3723-3749.	6.6	111
4	Sugar Signaling During Fruit Ripening. Frontiers in Plant Science, 2020, 11, 564917.	3.6	98
5	Gene expression atlas of fruit ripening and transcriptome assembly from RNA-seq data in octoploid strawberry (Fragaria × ananassa). Scientific Reports, 2017, 7, 13737.	3.3	95
6	The NAC transcription factor FaRIF controls fruit ripening in strawberry. Plant Cell, 2021, 33, 1574-1593.	6.6	95
7	Alteration of the Interconversion of Pyruvate and Malate in the Plastid or Cytosol of Ripening Tomato Fruit Invokes Diverse Consequences on Sugar But Similar Effects on Cellular Organic Acid, Metabolism, and Transitory Starch Accumulation À À. Plant Physiology, 2013, 161, 628-643.	4.8	78
8	Metabolite Changes during Postharvest Storage: Effects on Fruit Quality Traits. Metabolites, 2020, 10, 187.	2.9	68
9	Central role of <i>Fa<scp>GAMYB</scp></i> in the transition of the strawberry receptacle from development to ripening. New Phytologist, 2015, 208, 482-496.	7.3	62
10	Transcriptomic Analysis in Strawberry Fruits Reveals Active Auxin Biosynthesis and Signaling in the Ripe Receptacle. Frontiers in Plant Science, 2017, 8, 889.	3.6	55
11	Virulence determines beneficial tradeâ€offs in the response of virusâ€infected plants to drought via induction of salicylic acid. Plant, Cell and Environment, 2017, 40, 2909-2930.	5.7	49
12	Genetic diversity of strawberry germplasm using metabolomic biomarkers. Scientific Reports, 2018, 8, 14386.	3.3	46
13	Multifaceted regulatory function of tomato SITAF1 in the response to salinity stress. New Phytologist, 2020, 225, 1681-1698.	7.3	42
14	Growth and metabolic adjustments in response to gibberellin deficiency in drought stressed tomato plants. Environmental and Experimental Botany, 2019, 159, 95-107.	4.2	41
15	Synaptotagmins at the endoplasmic reticulum–plasma membrane contact sites maintain diacylglycerol homeostasis during abiotic stress. Plant Cell, 2021, 33, 2431-2453.	6.6	41
16	Genetic and metabolic effects of ripening mutations and vine detachment on tomato fruit quality. Plant Biotechnology Journal, 2020, 18, 106-118.	8.3	39
17	Metabolic reconfiguration of strawberry physiology in response to postharvest practices. Food Chemistry, 2020, 321, 126747.	8.2	34
18	Quantitative trait loci analysis of seedâ€specialized metabolites reveals seedâ€specific flavonols and differential regulation of glycoalkaloid content in tomato. Plant Journal, 2020, 103, 2007-2024.	5.7	32

Jose G Vallarino

#	Article	IF	CITATIONS
19	Signaling role of oligogalacturonides derived during cell wall degradation. Plant Signaling and Behavior, 2012, 7, 1447-1449.	2.4	26
20	Flux balance analysis of metabolism during growth by osmotic cell expansion and its application to to to tomato fruits. Plant Journal, 2020, 103, 68-82.	5.7	26
21	Characterizing the involvement of <i>FaMADS9</i> in the regulation of strawberry fruit receptacle development. Plant Biotechnology Journal, 2020, 18, 929-943.	8.3	25
22	Identification of quantitative trait loci and candidate genes for primary metabolite content in strawberry fruit. Horticulture Research, 2019, 6, 4.	6.3	24
23	Biosynthesis of Methoxypyrazines: Elucidating the Structural/Functional Relationship of Two <i>Vitis viniferaO</i> -Methyltransferases Capable of Catalyzing the Putative Final Step of the Biosynthesis of 3-Alkyl-2-Methoxypyrazine Journal of Agricultural and Food Chemistry, 2011, 59, 7310-7316.	5.2	23
24	Postharvest changes in LIN5-down-regulated plants suggest a role for sugar deficiency in cuticle metabolism during ripening. Phytochemistry, 2017, 142, 11-20.	2.9	23
25	Acquisition of Volatile Compounds by Gas Chromatography–Mass Spectrometry (GC-MS). Methods in Molecular Biology, 2018, 1778, 225-239.	0.9	20
26	Organic Acids. , 2019, , 207-224.		20
27	Influence of plant growth regulators on Expansin2 expression in strawberry fruit. Cloning and functional analysis of FaEXP2 promoter region. Postharvest Biology and Technology, 2016, 114, 17-28.	6.0	19
28	Combining metabolomic and transcriptomic approaches to assess and improve crop quality traits. CABI Agriculture and Bioscience, 2021, 2, .	2.4	19
29	A manipulation of carotenoid metabolism influence biomass partitioning and fitness in tomato. Metabolic Engineering, 2022, 70, 166-180.	7.0	19
30	The immune repressor BIR1 contributes to antiviral defense and undergoes transcriptional and postâ€ŧranscriptional regulation during viral infections. New Phytologist, 2019, 224, 421-438.	7.3	16
31	Differential root and shoot responses in the metabolism of tomato plants exhibiting reduced levels of gibberellin. Environmental and Experimental Botany, 2019, 157, 331-343.	4.2	16
32	Genetic analysis of phenylpropanoids and antioxidant capacity in strawberry fruit reveals mQTL hotspots and candidate genes. Scientific Reports, 2020, 10, 20197.	3.3	16
33	Multi-gene metabolic engineering of tomato plants results in increased fruit yield up to 23%. Scientific Reports, 2020, 10, 17219.	3.3	15
34	Regulation of Plant Tannin Synthesis in Crop Species. Frontiers in Genetics, 2022, 13, 870976.	2.3	13
35	Abiotic stresses differentially affect the expression of O-methyltransferase genes related to methoxypyrazine biosynthesis in seeded and parthenocarpic fruits of Vitis vinifera (L.). Food Chemistry, 2014, 154, 117-126.	8.2	11
36	Network Analysis Provides Insight into Tomato Lipid Metabolism. Metabolites, 2020, 10, 152.	2.9	10

JOSE G VALLARINO

#	Article	IF	CITATIONS
37	Simultaneous Determination of Plant Hormones by GC-TOF-MS. Methods in Molecular Biology, 2016, 1363, 229-237.	0.9	9
38	Decreased Levels of Thioredoxin o1 Influences Stomatal Development and Aperture but Not Photosynthesis under Non-Stress and Saline Conditions. International Journal of Molecular Sciences, 2021, 22, 1063.	4.1	8
39	Metabolomics-Based Evaluation of Crop Quality Changes as a Consequence of Climate Change. Metabolites, 2021, 11, 461.	2.9	8
40	Non-Targeted Metabolite Profiles and Sensory Properties Elucidate Commonalities and Differences of Wines Made with the Same Variety but Different Cultivar Clones. Metabolites, 2020, 10, 220.	2.9	7
41	Developmental metabolomics to decipher and improve fleshy fruit quality. Advances in Botanical Research, 2021, 98, 3-34.	1.1	6
42	The <i>Arabidopsis</i> electronâ€ŧransfer flavoprotein:ubiquinone oxidoreductase is required during normal seed development and germination. Plant Journal, 2022, 109, 196-214.	5.7	6
43	Cytochrome c Deficiency Differentially Affects the In Vivo Mitochondrial Electron Partitioning and Primary Metabolism Depending on the Photoperiod. Plants, 2021, 10, 444.	3.5	3
44	Fruit Ripening and QTL for Fruit Quality in the Octoploid Strawberry. Compendium of Plant Genomes, 2018, , 95-113.	0.5	2
45	Profiling Volatile Compounds in Blackcurrant Fruit using Headspace Solid-Phase Microextraction Coupled to Gas Chromatography-Mass Spectrometry. Journal of Visualized Experiments, 2021, , .	0.3	2
46	Extraction and Measurement the Activities of Cytosolic Phosphoenolpyruvate Carboxykinase (PEPCK) and Plastidic NADP-dependent Malic Enzyme (ME) on Tomato (Solanum lycopersicum). Bio-protocol, 2014, 4, .	0.4	2