
Maria J Calasanz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2573824/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nature Genetics, 2005, 37, 391-400.	21.4	1,710
2	Landscape of somatic mutations and clonal evolution in mantle cell lymphoma. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 18250-18255.	7.1	488
3	Deregulated expression of cytokine receptor gene, CRLF2, is involved in lymphoid transformation in B-cell precursor acute lymphoblastic leukemia. Blood, 2009, 114, 2688-2698.	1.4	445
4	Risk-adapted treatment of acute promyelocytic leukemia with all-trans-retinoic acid and anthracycline monochemotherapy: a multicenter study by the PETHEMA group. Blood, 2003, 103, 1237-1243.	1.4	395
5	Epigenetic Silencing of the Tumor Suppressor MicroRNA <i>Hsa-miR-124a</i> Regulates CDK6 Expression and Confers a Poor Prognosis in Acute Lymphoblastic Leukemia. Cancer Research, 2009, 69, 4443-4453.	0.9	299
6	A modified AIDA protocol with anthracycline-based consolidation results in high antileukemic efficacy and reduced toxicity in newly diagnosed PML/RARalpha-positive acute promyelocytic leukemia. PETHEMA group. Blood, 1999, 94, 3015-21.	1.4	293
7	Frequent mutation of the polycomb-associated gene ASXL1 in the myelodysplastic syndromes and in acute myeloid leukemia. Leukemia, 2010, 24, 1062-1065.	7.2	231
8	Molecular Subsets of Mantle Cell Lymphoma Defined by the <i>IGHV</i> Mutational Status and SOX11 Expression Have Distinct Biologic and Clinical Features. Cancer Research, 2012, 72, 5307-5316.	0.9	231
9	Incidence, characterization and prognostic significance of chromosomal abnormalities in 640 patients with primary myelodysplastic syndromes. British Journal of Haematology, 2000, 108, 346-356.	2.5	230
10	Cytogenetic risk stratification in chronic myelomonocytic leukemia. Haematologica, 2011, 96, 375-383.	3.5	226
11	Recurrent involvement of the REL and BCL11Aloci in classical Hodgkin lymphoma. Blood, 2002, 99, 1474-1477.	1.4	224
12	Down-Regulation of <i>hsa-miR-10a</i> in Chronic Myeloid Leukemia CD34+ Cells Increases USF2-Mediated Cell Growth. Molecular Cancer Research, 2008, 6, 1830-1840.	3.4	208
13	Promoter hypermethylation of cancer-related genes: a strong independent prognostic factor in acute lymphoblastic leukemia. Blood, 2004, 104, 2492-2498.	1.4	204
14	Five members of the CEBP transcription factor family are targeted by recurrent IGH translocations in B-cell precursor acute lymphoblastic leukemia (BCP-ALL). Blood, 2007, 109, 3451-3461.	1.4	188
15	Measurable Residual Disease by Next-Generation Flow Cytometry in Multiple Myeloma. Journal of Clinical Oncology, 2020, 38, 784-792.	1.6	175
16	Cytogenetic aberrations and their prognostic value in a series of 330 splenic marginal zone B-cell lymphomas: a multicenter study of the Splenic B-Cell Lymphoma Group. Blood, 2010, 116, 1479-1488.	1.4	174
17	Cytogenetic complexity in chronic lymphocytic leukemia: definitions, associations, and clinical impact. Blood, 2019, 133, 1205-1216.	1.4	164
18	Identification of novel cytogenetic markers with prognostic significance in a series of 968 patients with primary myelodysplastic syndromes. Haematologica, 2005, 90, 1168-78.	3.5	163

#	Article	IF	CITATIONS
19	Risk-adapted treatment of acute promyelocytic leukemia with all-trans retinoic acid and anthracycline monochemotherapy: long-term outcome of the LPA 99 multicenter study by the PETHEMA Group. Blood, 2008, 112, 3130-3134.	1.4	154
20	SETBP1 overexpression is a novel leukemogenic mechanism that predicts adverse outcome in elderly patients with acute myeloid leukemia. Blood, 2010, 115, 615-625.	1.4	154
21	Epigenetic regulation of Wnt-signaling pathway in acute lymphoblastic leukemia. Blood, 2007, 109, 3462-3469.	1.4	153
22	Cytogenetic analysis of 280 patients with multiple myeloma and related disorders: Primary breakpoints and clinical correlations. Genes Chromosomes and Cancer, 1997, 18, 84-93.	2.8	150
23	Exome sequencing reveals novel and recurrent mutations with clinical impact in blastic plasmacytoid dendritic cell neoplasm. Leukemia, 2014, 28, 823-829.	7.2	148
24	Epigenetic Regulation of MicroRNAs in Acute Lymphoblastic Leukemia. Journal of Clinical Oncology, 2009, 27, 1316-1322.	1.6	131
25	PP2A impaired activity is a common event in acute myeloid leukemia and its activation by forskolin has a potent anti-leukemic effect. Leukemia, 2011, 25, 606-614.	7.2	124
26	Whole-epigenome analysis in multiple myeloma reveals DNA hypermethylation of B cell-specific enhancers. Genome Research, 2015, 25, 478-487.	5.5	118
27	Cancer Epigenetics and Methylation. Science, 2002, 297, 1807d-1808.	12.6	116
28	A Comprehensive Microarray-Based DNA Methylation Study of 367 Hematological Neoplasms. PLoS ONE, 2009, 4, e6986.	2.5	115
29	Impact of adjunct cytogenetic abnormalities for prognostic stratification in patients with myelodysplastic syndrome and deletion 5q. Leukemia, 2011, 25, 110-120.	7.2	113
30	Overexpression of SET is a recurrent event associated with poor outcome and contributes to protein phosphatase 2A inhibition in acute myeloid leukemia. Haematologica, 2012, 97, 543-550.	3.5	105
31	Decoding the DNA Methylome of Mantle Cell Lymphoma in the Light of the Entire B Cell Lineage. Cancer Cell, 2016, 30, 806-821.	16.8	103
32	MicroRNA expression profiling in Imatinib-resistant Chronic Myeloid Leukemia patients without clinically significant ABL1-mutations. Molecular Cancer, 2009, 8, 69.	19.2	101
33	Reversion of epigenetically mediated BIM silencing overcomes chemoresistance in Burkitt lymphoma. Blood, 2010, 116, 2531-2542.	1.4	96
34	Novel translocations that disrupt the plateletâ€derived growth factor receptor β (PDGFRB) gene in BCR–ABLâ€negative chronic myeloproliferative disorders. British Journal of Haematology, 2003, 120, 251-256.	2.5	87
35	A comprehensive genetic and histopathologic analysis identifies two subgroups of B-cell malignancies carrying a t(14;19)(q32;q13) or variant BCL3-translocation. Leukemia, 2007, 21, 1532-1544.	7.2	85
36	Multicolor spectral karyotyping identifies new recurring breakpoints and translocations in multiple myeloma. Blood, 1998, 92, 1743-8.	1.4	85

#	Article	IF	CITATIONS
37	Interphase FISH assays for the detection of translocations with breakpoints in immunoglobulin light chain loci. International Journal of Cancer, 2002, 98, 470-474.	5.1	84
38	Additional chromosome abnormalities in patients with acute promyelocytic leukemia treated with all-trans retinoic acid and chemotherapy. Haematologica, 2010, 95, 424-431.	3.5	84
39	Multicolor-FICTION. American Journal of Pathology, 2002, 161, 413-420.	3.8	81
40	Deep MRD profiling defines outcome and unveils different modes of treatment resistance in standard- and high-risk myeloma. Blood, 2021, 137, 49-60.	1.4	80
41	Abnormal methylation of the commonPARK2andPACRGpromoter is associated with downregulation of gene expression in acute lymphoblastic leukemia and chronic myeloid leukemia. International Journal of Cancer, 2006, 118, 1945-1953.	5.1	77
42	Abnormalities on 1q and 7q are associated with poor outcome in sporadic Burkitt's lymphoma. A cytogenetic and comparative genomic hybridization study. Leukemia, 2003, 17, 2016-2024.	7.2	76
43	The potential effect of gender in combination with common genetic polymorphisms of drug-metabolizing enzymes on the risk of developing acute leukemia. Haematologica, 2007, 92, 308-314.	3.5	76
44	Profile of polymorphisms of drug-metabolising enzymes and the risk of therapy-related leukaemia. British Journal of Haematology, 2007, 136, 590-596.	2.5	75
45	Methylation of CpG dinucleotides and/or CCWGG motifs at the promoter of TP53 correlates with decreased gene expression in a subset of acute lymphoblastic leukemia patients. Oncogene, 2003, 22, 1070-1072.	5.9	73
46	Response to lenalidomide in myelodysplastic syndromes with del(5q): influence of cytogenetics and mutations. British Journal of Haematology, 2013, 162, 74-86.	2.5	73
47	DNA Methylation Profiles and Their Relationship with Cytogenetic Status in Adult Acute Myeloid Leukemia. PLoS ONE, 2010, 5, e12197.	2.5	73
48	TET2 Mutations Are Associated with Specific 5-Methylcytosine and 5-Hydroxymethylcytosine Profiles in Patients with Chronic Myelomonocytic Leukemia. PLoS ONE, 2012, 7, e31605.	2.5	70
49	Disruption and aberrant expression of HMGA2 as a consequence of diverse chromosomal translocations in myeloid malignancies. Leukemia, 2005, 19, 245-252.	7.2	69
50	Incidence and prognostic impact of secondary cytogenetic aberrations in a series of 145 patients with mantle cell lymphoma. Genes Chromosomes and Cancer, 2010, 49, 439-451.	2.8	68
51	A 3-cM commonly deleted region in 6q21 in leukemias and lymphomas delineated by fluorescence in situ hybridization. Genes Chromosomes and Cancer, 2000, 27, 52-58.	2.8	67
52	NIN, a Gene Encoding a CEP110-Like Centrosomal Protein, Is Fused to PDGFRB in a Patient with a t(5;14)(q33;q24) and an Imatinib-Responsive Myeloproliferative Disorder 1. Cancer Research, 2004, 64, 2673-2676.	0.9	67
53	Molecular cytogenetic detection of chromosomal breakpoints in T-cell receptor gene loci. Leukemia, 2003, 17, 738-745.	7.2	66
54	Identification of new translocations involving <i>ETV6</i> in hematologic malignancies by fluorescence in situ hybridization and spectral karyotyping. Genes Chromosomes and Cancer, 2001, 31, 134-142.	2.8	64

#	Article	IF	CITATIONS
55	Overexpression of GATA2 predicts an adverse prognosis for patients with acute myeloid leukemia and it is associated with distinct molecular abnormalities. Leukemia, 2012, 26, 550-554.	7.2	64
56	ASPP1, a common activator of TP53, is inactivated by aberrant methylation of its promoter in acute lymphoblastic leukemia. Oncogene, 2006, 25, 1862-1870.	5.9	63
57	CpG Island Methylator Phenotype Redefines the Prognostic Effect of t(12;21) in Childhood Acute Lymphoblastic Leukemia. Clinical Cancer Research, 2006, 12, 4845-4850.	7.0	62
58	Mutation Patterns of 16 Genes in Primary and Secondary Acute Myeloid Leukemia (AML) with Normal Cytogenetics. PLoS ONE, 2012, 7, e42334.	2.5	60
59	Prognostic value of FLT3 mutations in patients with acute promyelocytic leukemia treated with all-trans retinoic acid and anthracycline monochemotherapy. Haematologica, 2011, 96, 1470-1477.	3.5	59
60	TP53is frequently altered by methylation, mutation, and/or deletion in acute lymphoblastic leukaemia. Molecular Carcinogenesis, 2003, 38, 201-208.	2.7	58
61	Deregulation of <i>FGFR1</i> and <i>CDK6</i> oncogenic pathways in acute lymphoblastic leukaemia harbouring epigenetic modifications of the <i>MIR9</i> family. British Journal of Haematology, 2011, 155, 73-83.	2.5	53
62	Pretreatment characteristics and clinical outcome of acute promyelocytic leukaemia patients according to the <i>PMLâ€RARα</i> isoforms: a study of the PETHEMA group. British Journal of Haematology, 2001, 114, 99-103.	2.5	52
63	Frequent and Simultaneous Epigenetic Inactivation of TP53 Pathway Genes in Acute Lymphoblastic Leukemia. PLoS ONE, 2011, 6, e17012.	2.5	52
64	Targeted resequencing analysis of 31 genes commonly mutated in myeloid disorders in serial samples from myelodysplastic syndrome patients showing disease progression. Leukemia, 2016, 30, 248-250.	7.2	51
65	DNA profiling analysis of 100 consecutive de novo acute myeloid leukemia cases reveals patterns of genomic instability that affect all cytogenetic risk groups. Leukemia, 2007, 21, 1224-1231.	7.2	50
66	Epigenetic Inactivation of the Groucho Homologue Gene TLE1 in Hematologic Malignancies. Cancer Research, 2008, 68, 4116-4122.	0.9	50
67	Biallelic inactivation of TRAF3 in a subset of B-cell lymphomas with interstitial del(14)(q24.1q32.33). Leukemia, 2009, 23, 2153-2155.	7.2	50
68	A cyclin-D1 interaction with BAX underlies its oncogenic role and potential as a therapeutic target in mantle cell lymphoma. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 12461-12466.	7.1	50
69	Clinical variability of patients with the t(6;8)(q27;p12) and FGFR1OP-FGFR1 fusion: two further cases. The Hematology Journal, 2004, 5, 534-537.	1.4	49
70	Identification of overexpressed genes in frequently gained/amplified chromosome regions in multiple myeloma. Haematologica, 2006, 91, 184-91.	3.5	48
71	Long-Range Epigenetic Silencing Associates with Deregulation of Ikaros Targets in Colorectal Cancer Cells. Molecular Cancer Research, 2011, 9, 1139-1151.	3.4	47
72	Molecular heterogeneity in AML/MDS patients with 3q21q26 rearrangements. Genes Chromosomes and Cancer, 2004, 40, 179-189.	2.8	46

#	Article	IF	CITATIONS
73	Aberrant DNA methylation profile of chronic and transformed classic Philadelphia-negative myeloproliferative neoplasms. Haematologica, 2013, 98, 1414-1420.	3.5	46
74	Additional cytogenetic changes do not influence the outcome of patients with newly diagnosed acute promyelocytic leukemia treated with an ATRA plus anthracyclin based protocol. A report of the Spanish group PETHEMA. Haematologica, 2001, 86, 807-13.	3.5	46
75	Role of MTHFR (677, 1298) haplotype in the risk of developing secondary leukemia after treatment of breast cancer and hematological malignancies. Leukemia, 2007, 21, 1413-1422.	7.2	45
76	Down-regulation of EVI1 is associated with epigenetic alterations and good prognosis in patients with acute myeloid leukemia. Haematologica, 2011, 96, 1448-1456.	3.5	45
77	Highâ€ŧhroughput sequencing analysis of the chromosome 7q32 deletion reveals <scp>IRF</scp> 5 as a potential tumour suppressor in splenic marginalâ€zone lymphoma. British Journal of Haematology, 2012, 158, 712-726.	2.5	45
78	Single nucleotide polymorphism array karyotyping: A diagnostic and prognostic tool in myelodysplastic syndromes with unsuccessful conventional cytogenetic testing. Genes Chromosomes and Cancer, 2013, 52, 1167-1177.	2.8	44
79	Patients with chronic lymphocytic leukemia and complex karyotype show an adverse outcome even in absence of <i>TP53/ATM FISH</i> deletions. Oncotarget, 2017, 8, 54297-54303.	1.8	44
80	Analysis of genomic breakpoints in p190 and p210 BCR–ABL indicate distinct mechanisms of formation. Leukemia, 2010, 24, 1742-1750.	7.2	43
81	Homeobox NKX2-3 promotes marginal-zone lymphomagenesis by activating B-cell receptor signalling and shaping lymphocyte dynamics. Nature Communications, 2016, 7, 11889.	12.8	42
82	Endogenous Retroelement Activation by Epigenetic Therapy Reverses the Warburg Effect and Elicits Mitochondrial-Mediated Cancer Cell Death. Cancer Discovery, 2021, 11, 1268-1285.	9.4	42
83	JAK2 V617F mutation in classic chronic myeloproliferative diseases: a report on a series of 349 patients. Leukemia, 2006, 20, 534-535.	7.2	41
84	Preclinical activity of LBH589 alone or in combination with chemotherapy in a xenogeneic mouse model of human acute lymphoblastic leukemia. Leukemia, 2012, 26, 1517-1526.	7.2	41
85	Transcriptional profiling of circulating tumor cells in multiple myeloma: a new model to understand disease dissemination. Leukemia, 2020, 34, 589-603.	7.2	41
86	Genomic imbalances detected by comparative genomic hybridization are prognostic markers in invasive ductal breast carcinomas. Histopathology, 2002, 40, 547-555.	2.9	40
87	Analysis of myelodysplastic syndromes with complex karyotypes by highâ€resolution comparative genomic hybridization and subtelomeric CGH array. Genes Chromosomes and Cancer, 2005, 42, 287-298.	2.8	40
88	A Gain of Function Mutation in JAK2 Is Frequently Found in Patients with AML-M2 and Normal Karyotype Blood, 2005, 106, 2366-2366.	1.4	40
89	Circulating Tumor Cells for the Staging of Patients With Newly Diagnosed Transplant-Eligible Multiple Myeloma. Journal of Clinical Oncology, 2022, 40, 3151-3161.	1.6	40
90	Hypodiploidy and 22q11 rearrangements at diagnosis are associated with poor prognosis in patients with multiple myeloma. British Journal of Haematology, 1997, 98, 418-425.	2.5	39

#	Article	IF	CITATIONS
91	Identification of candidate tumor-suppressor genes in 6q27 by combined deletion mapping and electronic expression profiling in lymphoid neoplasms. Genes Chromosomes and Cancer, 2003, 37, 421-426.	2.8	39
92	Resistance to Imatinib Mesylate-induced apoptosis in acute lymphoblastic leukemia is associated with PTEN down-regulation due to promoter hypermethylation. Leukemia Research, 2008, 32, 709-716.	0.8	39
93	Epigenetic Activation of SOX11 in Lymphoid Neoplasms by Histone Modifications. PLoS ONE, 2011, 6, e21382.	2.5	38
94	Curative Strategy (GEM-CESAR) for High-Risk Smoldering Myeloma (SMM): Carfilzomib, Lenalidomide and Dexamethasone (KRd) As Induction Followed By HDT-ASCT, Consolidation with Krd and Maintenance with Rd. Blood, 2019, 134, 781-781.	1.4	38
95	Amplification ofIGH/MYC fusion in clinically aggressiveIGH/BCL2-positive germinal center B-cell lymphomas. Genes Chromosomes and Cancer, 2005, 43, 414-423.	2.8	37
96	Mutations in <i><scp>SETBP</scp>1</i> are recurrent in myelodysplastic syndromes and often coexist with cytogenetic markers associated with disease progression. British Journal of Haematology, 2013, 163, 235-239.	2.5	37
97	Fluorescence in situ hybridization improves the detection of 5q31 deletion in myelodysplastic syndromes without cytogenetic evidence of 5q Haematologica, 2008, 93, 1001-1008.	3.5	36
98	Integration of SNP and mRNA Arrays with MicroRNA Profiling Reveals That MiR-370 Is Upregulated and Targets NF1 in Acute Myeloid Leukemia. PLoS ONE, 2012, 7, e47717.	2.5	36
99	Chromatin activation as a unifying principle underlying pathogenic mechanisms in multiple myeloma. Genome Research, 2020, 30, 1217-1227.	5.5	35
100	<i>BCRâ€ABL1</i> â€induced expression of <i>HSPA8</i> promotes cell survival in chronic myeloid leukaemia. British Journal of Haematology, 2008, 142, 571-582.	2.5	33
101	EVI1 controls proliferation in acute myeloid leukaemia through modulation of miR-1-2. British Journal of Cancer, 2010, 103, 1292-1296.	6.4	33
102	Assessment of the clinical utility of four NGS panels in myeloid malignancies. Suggestions for NGS panel choice or design. PLoS ONE, 2020, 15, e0227986.	2.5	33
103	p53 Aberrations do not predict individual response to fludarabine in patients with B-cell chronic lymphocytic leukaemia in advanced stages Rai III/IV. British Journal of Haematology, 2005, 129, 53-59.	2.5	31
104	Downregulation of specific miRNAs in hyperdiploid multiple myeloma mimics the oncogenic effect of IgH translocations occurring in the non-hyperdiploid subtype. Leukemia, 2013, 27, 925-931.	7.2	31
105	Molecular characterization of a t(1;3)(p36;q21) in a patient with MDS. MEL1 is widely expressed in normal tissues, including bone marrow, and it is not overexpressed in the t(1;3) cells. Oncogene, 2004, 23, 311-316.	5.9	30
106	Downregulation of DBC1 expression in acute lymphoblastic leukaemia is mediated by aberrant methylation of its promoter. British Journal of Haematology, 2006, 134, 137-144.	2.5	30
107	Silencing of hsa-miR-124 by EVI1 in cell lines and patients with acute myeloid leukemia. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, E167-8; author reply E169-70.	7.1	30
108	Chromatin modifications induced by the AML1-ETO fusion protein reversibly silence its genomic targets through AML1 and Sp1 binding motifs. Leukemia, 2012, 26, 1329-1337.	7.2	30

#	Article	IF	CITATIONS
109	Frequent gain of chromosome 19 in megakaryoblastic leukemias detected by comparative genomic hybridization. Genes Chromosomes and Cancer, 2001, 32, 285-293.	2.8	29
110	JAK2-V617F activating mutation in acute myeloid leukemia: prognostic impact and association with other molecular markers. Leukemia, 2007, 21, 2386-2390.	7.2	29
111	A novel gene,MDS2,is fused toETV6/TELin a t(1;12)(p36.1;p13) in a patient with myelodysplastic syndrome. Genes Chromosomes and Cancer, 2002, 35, 11-19.	2.8	28
112	t(10;16)(q22;p13) and <i>MORF</i> â€ <i>CREBBP</i> fusion is a recurrent event in acute myeloid leukemia. Genes Chromosomes and Cancer, 2003, 36, 402-405.	2.8	28
113	The molecular pathogenesis of the NUP98-HOXA9 fusion protein in acute myeloid leukemia. Leukemia, 2017, 31, 2000-2005.	7.2	28
114	Characterization of complete IncRNAs transcriptome reveals the functional and clinical impact of IncRNAs in multiple myeloma. Leukemia, 2021, 35, 1438-1450.	7.2	28
115	Multiple myeloma primary cells show a highly rearranged unbalanced genome with amplifications and homozygous deletions irrespective of the presence of immunoglobulin-related chromosome translocations. Haematologica, 2007, 92, 795-802.	3.5	28
116	Cytogenetic analysis of 280 patients with multiple myeloma and related disorders: primary breakpoints and clinical correlations. Genes Chromosomes and Cancer, 1997, 18, 84-93.	2.8	28
117	De novo erythroleukemia chromosome features include multiple rearrangements, with special involvement of chromosomes 11 and 19. Genes Chromosomes and Cancer, 2003, 36, 406-412.	2.8	27
118	αCP-4, Encoded by a Putative Tumor Suppressor Gene at 3p21, But Not Its Alternative Splice Variant αCP-4a, Is Underexpressed in Lung Cancer. Cancer Research, 2004, 64, 4171-4179.	0.9	27
119	LMO2 expression reflects the different stages of blast maturation and genetic features in B-cell acute lymphoblastic leukemia and predicts clinical outcome. Haematologica, 2011, 96, 980-986.	3.5	26
120	Circulating tumor cells for comprehensive and multiregional non-invasive genetic characterization of multiple myeloma. Leukemia, 2020, 34, 3007-3018.	7.2	26
121	Further characterization of complex chromosomal rearrangements in myeloid malignancies: spectral karyotyping adds precision in defining abnormalities associated with poor prognosis. Leukemia, 2001, 15, 1133-1136.	7.2	25
122	Downregulation of PPP2R5E is a common event in acute myeloid leukemia that affects the oncogenic potential of leukemic cells. Haematologica, 2013, 98, e103-e104.	3.5	25
123	Spanish Guidelines for the use of targeted deep sequencing in myelodysplastic syndromes and chronic myelomonocytic leukaemia. British Journal of Haematology, 2020, 188, 605-622.	2.5	25
124	Cytogenetic profile of myelodysplastic syndromes with complex karyotypes: an analysis using spectral karyotyping. Cancer Genetics and Cytogenetics, 2004, 153, 39-47.	1.0	24
125	NALP1 is a transcriptional target for cAMP-response-element-binding protein (CREB) in myeloid leukaemia cells. Biochemical Journal, 2004, 384, 281-286.	3.7	24
126	Richter transformation driven by Epstein–Barr virus reactivation during therapyâ€related immunosuppression in chronic lymphocytic leukaemia. Journal of Pathology, 2018, 245, 61-73.	4.5	24

#	Article	IF	CITATIONS
127	Biological and clinical significance of dysplastic hematopoiesis in patients with newly diagnosed multiple myeloma. Blood, 2020, 135, 2375-2387.	1.4	24
128	Functional characterization of the promoter region of the human EVI1 gene in acute myeloid leukemia: RUNX1 and ELK1 directly regulate its transcription. Oncogene, 2013, 32, 2069-2078.	5.9	23
129	Hypermethylation of the alternative AWT1 promoter in hematological malignancies is a highly specific marker for acute myeloid leukemias despite high expression levels. Journal of Hematology and Oncology, 2014, 7, 4.	17.0	21
130	Preneoplastic somatic mutations including <i>MYD88</i> ^{L265P} in lymphoplasmacytic lymphoma. Science Advances, 2022, 8, eabl4644.	10.3	21
131	Bcr/Abl Interferes with the Fanconi Anemia/BRCA Pathway: Implications in the Chromosomal Instability of Chronic Myeloid Leukemia Cells. PLoS ONE, 2010, 5, e15525.	2.5	20
132	CIP2A high expression is a poor prognostic factor in normal karyotype acute myeloid leukemia. Haematologica, 2015, 100, e183-e185.	3.5	20
133	PLZF-RARα, NPM1-RARα, and Other Acute Promyelocytic Leukemia Variants: The PETHEMA Registry Experience and Systematic Literature Review. Cancers, 2020, 12, 1313.	3.7	20
134	Emergence of secondary acute leukemia in a patient treated for osteosarcoma: implications of germline TP53 mutations. , 1998, 30, 165-169.		19
135	<i>CSNK1A1</i> mutations and gene expression analysis in myelodysplastic syndromes with del(5q). British Journal of Haematology, 2015, 171, 210-214.	2.5	19
136	Identification of novel chromosomal rearrangements in acute myelogenous leukemia involving loci on chromosome 2p23, 15q22 and 17q21. Leukemia, 1999, 13, 1534-1538.	7.2	18
137	Comparative genomic hybridization and amplotyping by arbitrarily primed PCR in stage A B-CLL. Cancer Genetics and Cytogenetics, 2001, 130, 8-13.	1.0	18
138	Secondary myelodysplastic syndrome after treatment for promyelocytic leukemia. Cancer Genetics and Cytogenetics, 2003, 143, 178-181.	1.0	18
139	Impact of <scp>SNP</scp> array karyotyping on the diagnosis and the outcome of chronic myelomonocytic leukemia with low risk cytogenetic features or no metaphases. American Journal of Hematology, 2016, 91, 185-192.	4.1	18
140	Measurable residual disease in elderly acute myeloid leukemia: results from the PETHEMA-FLUGAZA phase 3 clinical trial. Blood Advances, 2021, 5, 760-770.	5.2	18
141	Chromosome banding analysis and genomic microarrays are both useful but not equivalent methods for genomic complexity risk stratification in chronic lymphocytic leukemia patients. Haematologica, 2022, 107, 593-603.	3.5	18
142	Cytogenetic data in 41 patients with multiple myeloma. Cancer Genetics and Cytogenetics, 1994, 78, 210-213.	1.0	17
143	Geographic differences in the incidence of cytogenetic abnormalities of acute myelogenous leukemia (AML) in Spain. Leukemia Research, 2006, 30, 943-948.	0.8	17
144	Identification of recurrent chromosomal breakpoints in multiple myeloma with complex karyotypes by combined G-banding, spectral karyotyping, and fluorescence in situ hybridization analyses. Cancer Genetics and Cytogenetics, 2006, 169, 143-149.	1.0	17

#	Article	IF	CITATIONS
145	Whole-exome sequencing in del(5q) myelodysplastic syndromes in transformation to acute myeloid leukemia. Leukemia, 2014, 28, 1148-1151.	7.2	17
146	Methylation status of SOCS1 and SOCS3 in BCR-ABL negative and JAK2V617F negative chronic myeloproliferative neoplasms. Leukemia Research, 2008, 32, 1638-1640.	0.8	16
147	Epigenomic profiling of myelofibrosis reveals widespread DNA methylation changes in enhancer elements and <i>ZFP36L1</i> as a potential tumor suppressor gene that is epigenetically regulated. Haematologica, 2019, 104, 1572-1579.	3.5	16
148	Impaired Condensin Complex and Aurora B kinase underlie mitotic and chromosomal defects in hyperdiploid B-cell ALL. Blood, 2020, 136, 313-327.	1.4	16
149	Molecular profiling of immunoglobulin heavy-chain gene rearrangements unveils new potential prognostic markers for multiple myeloma patients. Blood Cancer Journal, 2020, 10, 14.	6.2	16
150	Heterogeneity of structural abnormalities in the 7q31.3â^¼q34 region in myeloid malignancies. Cancer Genetics and Cytogenetics, 2004, 150, 136-143.	1.0	15
151	Guidelines for HER2 testing in breast cancer: a national consensus of the Spanish Society of Pathology (SEAP) and the Spanish Society of Medical Oncology (SEOM). Clinical and Translational Oncology, 2009, 11, 363-375.	2.4	15
152	Reciprocal translocations in myelodysplastic syndromes and chronic myelomonocytic leukemias: Review of 5,654 patients with an evaluable karyotype. Genes Chromosomes and Cancer, 2013, 52, 753-763.	2.8	15
153	Interstitial 13q14 deletions detected in the karyotype and translocations with concomitant deletion at 13q14 in chronic lymphocytic leukemia: Different genetic mechanisms but equivalent poorer clinical outcome. Genes Chromosomes and Cancer, 2014, 53, 788-797.	2.8	15
154	The relationship of TP53 R72P polymorphism to disease outcome and TP53 mutation in myelodysplastic syndromes. Blood Cancer Journal, 2015, 5, e291-e291.	6.2	15
155	Chromosomal abnormalities clustering in multiple myeloma reveals cytogenetic subgroups with nonrandom acquisition of chromosomal changes. Leukemia, 2004, 18, 654-657.	7.2	14
156	Lenalidomide and dexamethasone with or without clarithromycin in patients with multiple myeloma ineligible for autologous transplant: a randomized trial. Blood Cancer Journal, 2021, 11, 101.	6.2	14
157	Qip-Mass Spectrometry in High Risk Smoldering Multiple Myeloma Patients Included in the GEM-CESAR Trial: Comparison with Conventional and Minimal Residual Disease IMWG Response Assessment. Blood, 2019, 134, 581-581.	1.4	14
158	A Machine Learning Model Based on Tumor and Immune Biomarkers to Predict Undetectable MRD and Survival Outcomes in Multiple Myeloma. Clinical Cancer Research, 2022, 28, 2598-2609.	7.0	14
159	Cytogenetic and molecular characterization of a patient with simultaneous B-cell chronic lymphocytic leukemia and peripheral T-cell lymphoma. American Journal of Hematology, 2001, 68, 276-279.	4.1	13
160	Biallelic losses of 13q do not confer a poorer outcome in chronic lymphocytic leukaemia: analysis of 627 patients with isolated 13q deletion. British Journal of Haematology, 2013, 163, 47-54.	2.5	13
161	Nonclonal Chromosomal Aberrations Induced by Anti-Tumoral Regimens in Childhood Cancer. Cancer Genetics and Cytogenetics, 2000, 121, 78-85.	1.0	12
162	Clinical significance of complex karyotype at diagnosis in pediatric and adult patients with de novo acute promyelocytic leukemia treated with ATRA and chemotherapy. Leukemia and Lymphoma, 2019, 60, 1146-1155.	1.3	12

#	Article	IF	CITATIONS
163	Amplification of ERBB2, RARA, and TOP2A genes in a myelodysplastic syndrome transforming to acute myeloid leukemia. Cancer Genetics and Cytogenetics, 2001, 127, 174-176.	1.0	11
164	Coexistence of different clonal populations harboring the b3a2 (p210) and e1a2 (p190) BCR-ABL1 fusion transcripts in chronic myelogenous leukemia resistant to imatinib. Cancer Genetics and Cytogenetics, 2005, 160, 22-26.	1.0	11
165	Characterization and prognostic implication of 17 chromosome abnormalities in myelodysplastic syndrome. Leukemia Research, 2013, 37, 769-776.	0.8	11
166	Correlation of myelodysplastic syndromes with i(17)(q10) and <i><scp>TP</scp>53</i> and <i><scp>SETBP</scp>1</i> mutations. British Journal of Haematology, 2015, 171, 137-141.	2.5	11
167	Lack of association of CYP3A4-V polymorphism with the risk of treatment-related leukemia. Leukemia Research, 2005, 29, 595-597.	0.8	10
168	A new potential oncogenic mutation in the FERM domain of JAK2 in BCR/ABL1-negative and V617F-negative chronic myeloproliferative neoplasms revealed by a comprehensive screening of 17 tyrosine kinase coding genes. Cancer Genetics and Cytogenetics, 2010, 199, 1-8.	1.0	10
169	A variant t(14;17) in acute promyelocytic leukemia Positive response to retinoic acid treatment. Cancer Genetics and Cytogenetics, 1995, 80, 160-161.	1.0	9
170	Assessment of Minimal Residual Disease by Next Generation Sequencing in Peripheral Blood as a Complementary Tool for Personalized Transplant Monitoring in Myeloid Neoplasms. Journal of Clinical Medicine, 2020, 9, 3818.	2.4	9
171	The Minnesota Health Partnership and Coordinated Health Care and Disability Prevention: the implementation of an integrated benefits and medical care model. Journal of Occupational Rehabilitation, 2002, 12, 43-54.	2.2	8
172	Neurofibromatosis 1, and Not TP53, Seems to Be the Main Target of Chromosome 17 Deletions in De Novo Acute Myeloid Leukemia. Journal of Clinical Oncology, 2007, 25, 1151-1152.	1.6	8
173	NPM1 gene deletions in myelodysplastic syndromes with 5q- and complex karyotype. Haematologica, 2011, 96, 784-785.	3.5	8
174	Relationship of Disability Prevention to Patient Health Status and Satisfaction With Primary Care Provider. Journal of Occupational and Environmental Medicine, 2001, 43, 706-712.	1.7	7
175	NUP98 is fused to HOXA9 in a variant complex t(7;11;13;17) in a patient with AML-M2. Cancer Genetics and Cytogenetics, 2005, 157, 151-156.	1.0	7
176	FISH analysis of hematological neoplasias with 1p36 rearrangements allows the definition of a cluster of 2.5�Mb included in the minimal region deleted in 1p36 deletion syndrome. Human Genetics, 2005, 116, 476-485.	3.8	7
177	Molecular cytogenetics in translational oncology: when chromosomes meet genomics. Clinical and Translational Oncology, 2008, 10, 20-29.	2.4	7
178	Response to lenalidomide in a patient with myelodysplastic syndrome with isolated del(5q) and JAK2 V617F mutation. Leukemia and Lymphoma, 2010, 51, 1941-1943.	1.3	7
179	Prognostic impact of chromosomal translocations in myelodysplastic syndromes and chronic myelomonocytic leukemia patients. A study by the spanish group of myelodysplastic syndromes. Genes Chromosomes and Cancer, 2016, 55, 322-327.	2.8	7
180	Myelodysplastic syndromes with 20q deletion: incidence, prognostic value and impact on response to azacitidine of ASXL1 chromosomal deletion and genetic mutations. British Journal of Haematology, 2021, 194, 708-717.	2.5	7

#	Article	IF	CITATIONS
181	Strategy for Identification of an Inherited Leukemia Predisposition in a 299 Patients Cohort with Tumor-Only Sequencing Data. Blood, 2019, 134, 1415-1415.	1.4	7
182	A new case of acute lymphoblastic leukemia B-cell type with chromosomal rearrangements involving the T-cell receptor breakpoint at band 14q11. American Journal of Hematology, 1992, 41, 137-139.	4.1	6
183	Complex karyotype including 14q+ marker in a case of Waldenström's macroglobulinemia. Cancer Genetics and Cytogenetics, 1994, 73, 169-170.	1.0	6
184	Molecular cytogenetic characterization of breakpoints in 19 patients with hematologic malignancies and 12p unbalanced translocations. Cancer Genetics and Cytogenetics, 2003, 142, 115-119.	1.0	6
185	Array comparative genomic hybridization analysis of myelodysplastic syndromes with complex karyotypes. A technical evaluation. Cancer Genetics and Cytogenetics, 2003, 144, 87-89.	1.0	6
186	Cryptic ins(2;11) with clonal evolution showing amplification of 11q23–q25 either on hsr(11) or on dmin, in a patient with AML-M2. Leukemia, 2004, 18, 2041-2044.	7.2	6
187	CBL RING finger deletions are common in core-binding factor acute myeloid leukemias. Leukemia and Lymphoma, 2013, 54, 428-431.	1.3	6
188	Multiplex-polymerase chain reaction assay for the detection of prognostically significant translocations in acute lymphoblastic leukemia. Haematologica, 2001, 86, 1254-60.	3.5	6
189	Multicolor interphase cytogenetics for the study of plasma cell dyscrasias. Oncology Reports, 2007, 18, 1099-106.	2.6	6
190	Exon Concatenation to Increase the Efficiency of Mutation Screening by DGGE. BioTechniques, 2002, 32, 1064-1070.	1.8	5
191	P030 Prognostic impact on survival of an unsuccessful conventional cytogenetic study in patients with myelodysplastic syndromes (MDS). Leukemia Research, 2009, 33, S75-S76.	0.8	5
192	Insights into the mechanisms underlying aberrant SOX11 oncogene expression in mantle cell lymphoma. Leukemia, 2022, 36, 583-587.	7.2	5
193	Transcriptomic Profiling of Circulating Tumor Cells (CTCs) in Multiple Myeloma (MM): A New Model to Understand Disease Dissemination. Blood, 2018, 132, 245-245.	1.4	5
194	Román-Gómez J, Cordeu L, Agirre X, Jiménez-Velasco A, San José-Eneriz E, Garate L, Calasanz MJ, Heiniger A, Torres A, Prosper F. Epigenetic regulation of Wnt-signaling pathway in acute lymphoblastic leukemia. Blood. 2007;109(8):3462–3469 Blood, 2012, 120, 3625-3625.	1.4	4
195	Use of human pharyngeal and palatine tonsils as a reservoir for the analysis of Bâ€cell ontogeny in 10 paired samples. Clinical Otolaryngology, 2016, 41, 606-611.	1.2	4
196	Randomized Trial of Lenalidomide and Dexamethasone Versus Clarythromycin, Lenalidomide and Dexamethasone As First Line Treatment in Patients with Multiple Myeloma Not Candidates for Autologous Stem Cell Transplantation: Results of the GEM-Claridex Clinical Trial. Blood, 2019, 134, 694-694.	1.4	4
197	Risk of Central Nervous System (CNS) Involvement in Patients with Mantle Cell Lymphoma (MCL): Analysis of Clinico-Biological Factors in a Series of 283 Cases. Blood, 2014, 124, 1677-1677.	1.4	4
198	Double minute chromosomes and monosomy 7 in a lymphatic blast crisis of chronic myeloid leukemia. Cancer Genetics and Cytogenetics, 1990, 48, 133-134.	1.0	3

#	Article	IF	CITATIONS
199	Insertion (22;9)(q11;q34q21) in a patient with chronic myeloid leukemia characterized by fluorescence in situ hybridization. Cancer Genetics and Cytogenetics, 2001, 125, 167-170.	1.0	3
200	Simultaneous translocations of FGFR3/MMSET and CCND1 into two different IGH alleles in multiple myeloma: lack of concurrent activation of both proto-oncogenes. Cancer Genetics and Cytogenetics, 2007, 175, 65.e1-65.e5.	1.0	3
201	Low frequency of JAK2 exon 12 mutations in classic and atypical CMPDs. Leukemia Research, 2008, 32, 1485-1487.	0.8	3
202	Strategy for identification of a potential inherited leukemia predisposition in a 299 patient's cohort with tumor-only sequencing data. Leukemia Research, 2020, 95, 106386.	0.8	3
203	Clinical Significance and Transcriptional Profiling of Persistent Minimal Residual Disease (MRD) in Multiple Myeloma (MM) Patients with Standard-Risk (SR) and High-Risk (HR) Cytogenetics. Blood, 2018, 132, 112-112.	1.4	3
204	Absence of Contribution to a Differential Outcome of the Stringent Complete Response IMWG Category Respect to the Conventional CR in Multiple Myeloma. a Validation Analysis Based on the Pethema/GEM2012MENOS65 Phase III Clinical Trial. Blood, 2018, 132, 1943-1943.	1.4	3
205	Lack of Bcr-Abl point mutations in chronic myeloid leukemia patients in chronic phase before imatinib treatment is not predictive of response. Haematologica, 2003, 88, 1425-6.	3.5	3
206	Pediatric Meningosarcoma: Clinical Evolution and Genetic Instability. Pediatric Neurology, 2005, 32, 352-354.	2.1	2
207	Interphase FISH for the detection of breakpoints in IG loci and chromosomal changes with adverse prognostic impact in multiple myeloma with normal karyotypes. Cancer Genetics and Cytogenetics, 2006, 167, 183-185.	1.0	2
208	A new dic(7;12)(p12.21;p12.2) chromosome aberration in a case of acute myeloid leukemia. Cancer Genetics and Cytogenetics, 2008, 185, 102-105.	1.0	2
209	Refining the Breakpoints of Three New Translocations Identified in Myelodysplastic Syndromes. Acta Haematologica, 2016, 135, 94-100.	1.4	2
210	Prognostic implications of MRD assessment in multiple myeloma patients: comparison of Next-Generation Sequencing and Next-Generation Flow. Clinical Lymphoma, Myeloma and Leukemia, 2019, 19, e47.	0.4	2
211	Prognostic heterogeneity of adult Bâ€cell precursor acute lymphoblastic leukaemia patients with t(1;19)(q23;p13)/ TCF3â€PBX1 treated with measurable residual diseaseâ€oriented protocols. British Journal of Haematology, 2021, , .	2.5	2
212	Identification of new translocations involving ETV6 in hematologic malignancies by fluorescence in situ hybridization and spectral karyotyping. Genes Chromosomes and Cancer, 2001, 31, 134-142.	2.8	2
213	The Pathogenesis of Multiple Myeloma (MM) Is Preceded By Mutated Lymphopoiesis and B Cell Oligoclonality That Persist in Patients with Negative Minimal Residual Disease (MRD). Blood, 2019, 134, 509-509.	1.4	2
214	Discordances between Immunofixation (IFx) and Minimal Residual Disease (MRD) Assessment with Next-Generation Flow (NGF) and Sequencing (NGS) in Patients (Pts) with Multiple Myeloma (MM): Clinical and Pathogenic Significance. Blood, 2020, 136, 5-6.	1.4	2
215	Non-Invasive Genetic Profiling Is Highly Applicable in Multiple Myeloma (MM) through Characterization of Circulating Tumor Cells (CTCs). Blood, 2016, 128, 801-801.	1.4	2
216	HDAC Inhibitors As Novel Targeted Therapies for NUP98-HOXA9 AML Patients. Blood, 2016, 128, 2685-2685.	1.4	2

#	Article	IF	CITATIONS
217	Complex karyotype including trisomy 8 in a case of B-chronic lymphocytic leukemia. Cancer Genetics and Cytogenetics, 1992, 62, 108-109.	1.0	1
218	Novel dic(16;18)(q11;p11) in two cases of Philadelphia chromosome positive acute B-cell lymphoblastic leukemia. Cancer Genetics and Cytogenetics, 2002, 139, 63-66.	1.0	1
219	Cytogenetic Patterns in 384 Northern-Spanish Patients with Haematological Disorders. Hereditas, 2004, 118, 79-85.	1.4	1
220	Remission of acute monocytic leukemia, secondary to treatment with epipodophyllotoxins, in a patient with t(8;16)(p11;p13) and MYST3–CREBBP fusion. Cancer Genetics and Cytogenetics, 2004, 152, 177-178.	1.0	1
221	A novel t(7;13)(p12;q33â^¼q34) in AML-M2. Cancer Genetics and Cytogenetics, 2009, 195, 198-200.	1.0	1
222	Fluorescencein situhybridization analysis does not increase detection rate for trisomy 8 in chronic myelomonocytic leukemia. Leukemia and Lymphoma, 2015, 56, 242-243.	1.3	1
223	Monosomal karyotype in chronic lymphocytic leukemia: Association with clinical and biological features and potential prognostic significance. American Journal of Hematology, 2017, 92, E132-E135.	4.1	1
224	Role of IncRNAs as prognostic factor and potential therapeutic target in Multiple Myeloma. Clinical Lymphoma, Myeloma and Leukemia, 2019, 19, e354-e355.	0.4	1
225	Waldenström's Macroglobulinemia (WM) Is Preceded By Clonal Lymphopoiesis Including MYD88 L265P in Progenitor B Cells. Blood, 2019, 134, 1527-1527.	1.4	1
226	Frequent Mutation of the Polycomb-Associated Gene ASXL1 In Acute Myeloid Leukemia Secondary to Myelodysplastic Syndrome or Chronic Myelomonocytic Leukemia. Blood, 2010, 116, 2940-2940.	1.4	1
227	GATA2 Is Overexpressed in 46% of Patients with AML and Normal Karyotype. The Mutational Pattern FLT3-ITD/GATA2/WT1 Could Define a Group of Patients with Normal Karyotype and AML-M1 Subtype Blood, 2005, 106, 2378-2378.	1.4	1
228	The Presence of MDS-like Phenotypic Abnormalities (MDS-PA) Identifies Newly Diagnosed Multiple Myeloma (MM) Patients with MDS/AML-Related Somatic Mutations and Inferior Survival. Blood, 2016, 128, 375-375.	1.4	1
229	Circulating Tumor Cells (CTCs) for Comprehensive and Multiregional Non-Invasive Genetic Characterization of Multiple Myeloma (MM). Blood, 2019, 134, 3064-3064.	1.4	1
230	Characterization of Complete Lncrnas Transcriptome Reveals Expression of Lncrnas As a Prognostic Factor and Linc-Smilo As a Potential Therapeutic Target in Multiple Myeloma. Blood, 2019, 134, 4323-4323.	1.4	1
231	Chromosome Banding Analysis Versus Genomic Microarrays: A Comparison of Methods for Genomic Complexity Risk Stratification in Chronic Lymphocytic Leukemia Patients with Complex Karyotype. Blood, 2019, 134, 4287-4287.	1.4	1
232	Heavy and Light Chain Monitoring in High Risk Smoldering Multiple Myeloma Patients Included in the GEM-CESAR Trial: Comparison with Conventional and Minimal Residual Disease IMWG Response Assessment. Blood, 2019, 134, 1852-1852.	1.4	1
233	Landscape and clinical significance of long noncoding <scp>RNAs</scp> involved in multiple myeloma expressed fusion transcripts. American Journal of Hematology, 2022, 97, .	4.1	1
234	Clinical Validation of a NGS Capture Panel to Identify Mutations, Copy Number Variations and Translocations in Patients with Multiple Myeloma. Blood, 2020, 136, 13-14.	1.4	1

#	Article	IF	CITATIONS
235	Waldenström's Macroglobulinemia (WM) Is Preceded By Clonal Lymphopoiesis Including MYD88 L265P in Progenitor B Cells. Blood, 2020, 136, 42-43.	1.4	1
236	C005 Prognostic impact of the proportion of aberrant metaphases in patients with a primary myelodysplastic syndrome. Leukemia Research, 2009, 33, S33-S34.	0.8	0
237	P029 Prognostic relevance of specific chromosomal abnormalities in chronic myelomonocytic leukemia. Leukemia Research, 2009, 33, S74-S75.	0.8	Ο
238	Quantification of <i>PDGFRA</i> alternative transcripts improves the screening for <i>X–PDGFRA</i> fusions by reverse transcriptase-polymerase chain reaction. Leukemia and Lymphoma, 2010, 51, 1720-1726.	1.3	0
239	The GATA2 transcription factor directly binds and activates MYB expression in acute myeloid leukemia. Experimental Hematology, 2015, 43, S58.	0.4	Ο
240	The Presence of MDS-like Phenotypic Abnormalities (MDS-PA) Identifies Newly Diagnosed Multiple Myeloma (MM) Patients With MDS/AML-Related Somatic Mutations And Inferior Survival. Clinical Lymphoma, Myeloma and Leukemia, 2017, 17, e11.	0.4	0
241	Circulating Tumor Cells (CTCs) for Comprehensive and Multiregional Non-Invasive Genetic Characterization of Multiple Myeloma (MM). Clinical Lymphoma, Myeloma and Leukemia, 2019, 19, e351.	0.4	Ο
242	GATA2 May Contribute with EVI1 to the Leukemogenic Mechanism in Patients with 3q21q26 Rearrangements Blood, 2005, 106, 2852-2852.	1.4	0
243	Genetic Aberrations and Response to Fludarabine as First Line Treatment in a Serie of B-CLL Patients Blood, 2005, 106, 2131-2131.	1.4	Ο
244	A Novel Pro-Survival Function of Cyclin-D1 Underlies Its Oncogenic Role and Potential as a Therapeutic Target In Mantle Cell Lymphoma. Blood, 2010, 116, 769-769.	1.4	0
245	Homeobox NKX2-3 Is Over-Expressed in Human B-Cell Lymphomas and Drives Marginal Zone B-Cell Lymphomagenesis in Mice. Blood, 2011, 118, 260-260.	1.4	Ο
246	Abstract 2205: The EVI1 human protein regulates its own transcription. Role of the different isoforms. , 2012, , .		0
247	Abstract 85: RUNX1 and ELK1 directly regulate the transcription of EVI1 during megakaryocytic differentiation. , 2012, , .		Ο
248	Association of MDM2 Gene Polymorphisms SNP285 and 309 with Myelodysplastic Syndromes (MDS) Susceptibility and Outcome Blood, 2012, 120, 2823-2823.	1.4	0
249	Utility of SNP Arrays in Chronic Myelomonocytic Leukemia with Low Risk Cytogenetic Features or No Metaphases. Blood, 2014, 124, 4659-4659.	1.4	Ο
250	Comparison of the Molecular Spectrum of Lenalidomide-Treated Myelodysplastic Syndrome with and without Del(5q). Blood, 2016, 128, 3172-3172.	1.4	0
251	Immunofixation (IF) in Urine Is Really Necessary to Define Complete Remission in Multiple Myeloma (MM)? a Subanalysis from the Pethema/GEM2012MENOS65 Phase III Clinical Trial. Blood, 2018, 132, 474-474.	1.4	Ο
252	Lncrnas As New Partners of Novel Chimeric Transcripts in Multiple Myeloma. Blood, 2019, 134, 4356-4356.	1.4	0

#	Article	IF	CITATIONS
253	Cdx Report Program: Heterogeneity Revealed in Current Reporting Practices for Hemato-Oncology Companion Diagnostic (CDx) Markers in Multiple Countries. Blood, 2019, 134, 5837-5837.	1.4	Ο
254	Measurable Residual Disease (MRD) in Elderly Acute Myeloid Leukemia (AML): Results from the Pethema-Flugaza Phase III Clinical Trial. Blood, 2020, 136, 32-32.	1.4	0
255	Myelodysplastic Syndromes with 20q Deletion: Incidence, Prognostic Value and Impact on Response to Azacitidine of <i>ASXL1</i> Chromosomal Deletion and Genetic Mutations. Blood, 2020, 136, 1-2.	1.4	Ο
256	Characteristics and Outcomes of Adult Patients in the PETHEMA Registry with Relapsed or Refractory FLT3-ITD Mutation-Positive Acute Myeloid Leukemia. Cancers, 2022, 14, 2817.	3.7	0