
Kristian Unger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2573787/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Therapy-Related Transcriptional Subtypes in Matched Primary and Recurrent Head and Neck Cancer. Clinical Cancer Research, 2022, 28, 1038-1052.	7.0	13
2	Increased replication stress and R-loop accumulation in EGFRvIII-expressing glioblastoma present new therapeutic opportunities. Neuro-Oncology Advances, 2022, 4, vdab180.	0.7	2
3	IL1 Pathway in HPV-Negative HNSCC Cells Is an Indicator of Radioresistance After Photon and Carbon Ion Irradiation Without Functional Involvement. Frontiers in Oncology, 2022, 12, 878675.	2.8	5
4	Replication stress triggered by nucleotide pool imbalance drives DNA damage and cGAS-STING pathway activation in NAFLD. Developmental Cell, 2022, 57, 1728-1741.e6.	7.0	17
5	Utility of gene expression studies in relation to radiation exposure and clinical outcomes: thyroid cancer in the Ukrainian-American cohort and late health effects in a MAYAK worker cohort. International Journal of Radiation Biology, 2021, 97, 12-18.	1.8	4
6	p53-Independent Induction of p21 Fails to Control Regeneration and Hepatocarcinogenesis in a Murine Liver Injury Model. Cellular and Molecular Gastroenterology and Hepatology, 2021, 11, 1387-1404.	4.5	3
7	X-change symposium: status and future of modern radiation oncology—from technology to biology. Radiation Oncology, 2021, 16, 27.	2.7	1
8	NASH limits anti-tumour surveillance in immunotherapy-treated HCC. Nature, 2021, 592, 450-456.	27.8	649
9	Posterior subcapsular cataracts are a late effect after acute exposure to 0.5 Gy ionizing radiation in mice. International Journal of Radiation Biology, 2021, 97, 529-540.	1.8	5
10	Generation and Differentiation of Adult Tissue-Derived Human Thyroid Organoids. Stem Cell Reports, 2021, 16, 913-925.	4.8	37
11	Metformin Protects against Radiation-Induced Acute Effects by Limiting Senescence of Bronchial-Epithelial Cells. International Journal of Molecular Sciences, 2021, 22, 7064.	4.1	17
12	MicroRNA-182-5p and microRNA-205-5p as potential biomarkers for prognostic stratification of p16-positive oropharyngeal squamous cell carcinoma. Cancer Biomarkers, 2021, , 1-17.	1.7	6
13	Human microRNA â€182â€5p and kinectin 1: Potential biomarkers for prognosis in oral squamous cell carcinoma. Head and Neck, 2021, 43, 3707-3719.	2.0	0
14	Identification and validation of hypoxia-derived gene signatures to predict clinical outcomes and therapeutic responses in stage I lung adenocarcinoma patients. Theranostics, 2021, 11, 5061-5076.	10.0	48
15	Tumor DNAâ€Methylome derived Epigenetic Fingerprint Identifies HPV â€negative Head and Neck Patients at Risk for Locoregional Recurrence after Postoperative Radiochemotherapy. International Journal of Cancer, 2021, 150, 603.	5.1	2
16	Early senescence and production of senescence-associated cytokines are major determinants of radioresistance in head-and-neck squamous cell carcinoma. Cell Death and Disease, 2021, 12, 1162.	6.3	23
17	Generation of focal mutations and large genomic deletions in the pancreas using inducible <i>in vivo</i> genome editing. Carcinogenesis, 2020, 41, 334-344.	2.8	7
18	Direct conversion of human fibroblasts into therapeutically active vascular wall-typical mesenchymal stem cells. Cellular and Molecular Life Sciences, 2020, 77, 3401-3422.	5.4	13

#	Article	IF	CITATIONS
19	A Novel Gene Signature-Based Model Predicts Biochemical Recurrence-Free Survival in Prostate Cancer Patients after Radical Prostatectomy. Cancers, 2020, 12, 1.	3.7	300
20	Transcriptome network of the papillary thyroid carcinoma radiation marker CLIP2. Radiation Oncology, 2020, 15, 182.	2.7	1
21	Establishment and Validation of an Individualized Cell Cycle Process-Related Gene Signature to Predict Cancer-Specific Survival in Patients with Bladder Cancer. Cancers, 2020, 12, 1146.	3.7	8
22	Single-center versus multi-center data sets for molecular prognostic modeling: a simulation study. Radiation Oncology, 2020, 15, 109.	2.7	3
23	MCL1 Is Required for Maintenance of Intestinal Homeostasis and Prevention of Carcinogenesis in Mice. Gastroenterology, 2020, 159, 183-199.	1.3	22
24	Improved risk stratification in younger IDH wild-type glioblastoma patients by combining a 4-miRNA signature with MGMT promoter methylation status. Neuro-Oncology Advances, 2020, 2, vdaa137.	0.7	2
25	MicroRNA expression patterns in oral squamous cell carcinoma: hsaâ€mirâ€99bâ€3p and hsaâ€mirâ€100â€5p as novel prognostic markers for oral cancer. Head and Neck, 2019, 41, 3499-3515.	2.0	43
26	In-vitro cytocompatibility and growth factor content of GBR/GTR membranes. Dental Materials, 2019, 35, 963-969.	3.5	8
27	Characterization of HCC Mouse Models: Towards an Etiology-Oriented Subtyping Approach. Molecular Cancer Research, 2019, 17, 1493-1502.	3.4	23
28	PiggyBac transposon tools for recessive screening identify B-cell lymphoma drivers in mice. Nature Communications, 2019, 10, 1415.	12.8	37
29	Platelet GPlbα is a mediator and potential interventional target for NASH and subsequent liver cancer. Nature Medicine, 2019, 25, 641-655.	30.7	259
30	Murine Liver Organoids as a Genetically Flexible System to Study Liver Cancer In Vivo and In Vitro. Hepatology Communications, 2019, 3, 423-436.	4.3	25
31	A Five-MicroRNA Signature Predicts Survival and Disease Control of Patients with Head and Neck Cancer Negative for HPV Infection. Clinical Cancer Research, 2019, 25, 1505-1516.	7.0	67
32	Induction of apoptosis in ovarian cancer cells by miR-493-3p directly targeting AKT2, STK38L, HMGA2, ETS1 and E2F5. Cellular and Molecular Life Sciences, 2019, 76, 539-559.	5.4	28
33	A genomic copy number signature predicts radiation exposure in post―C hernobyl breast cancer. International Journal of Cancer, 2018, 143, 1505-1515.	5.1	10
34	Evolutionary routes and KRAS dosage define pancreatic cancer phenotypes. Nature, 2018, 554, 62-68.	27.8	328
35	Lifetime study in mice after acute low-dose ionizing radiation: a multifactorial study with special focus on cataract risk. Radiation and Environmental Biophysics, 2018, 57, 99-113.	1.4	30
36	Expression of mi <scp>RNA</scp> â€⊋6bâ€5p and its target <scp>TRPS</scp> 1 is associated with radiation exposure in postâ€ <scp>C</scp> hernobyl breast cancer. International Journal of Cancer, 2018, 142, 573-583.	5.1	29

#	Article	IF	CITATIONS
37	A prognostic mRNA expression signature of four 16q24.3 genes in radio(chemo)therapyâ€ŧreated head and neck squamous cell carcinoma (HNSCC). Molecular Oncology, 2018, 12, 2085-2101.	4.6	21
38	EpCAM ectodomain EpEX is a ligand of EGFR that counteracts EGF-mediated epithelial-mesenchymal transition through modulation of phospho-ERK1/2 in head and neck cancers. PLoS Biology, 2018, 16, e2006624.	5.6	43
39	High Expression of EpCAM and Sox2 is a Positive Prognosticator of Clinical Outcome for Head and Neck Carcinoma. Scientific Reports, 2018, 8, 14582.	3.3	30
40	Copy number aberrations from Affymetrix SNP 6.0 genotyping data—how accurate are commonly used prediction approaches?. Briefings in Bioinformatics, 2018, , .	6.5	3
41	MiR-744-5p inducing cell death by directly targeting HNRNPC and NFIX in ovarian cancer cells. Scientific Reports, 2018, 8, 9020.	3.3	84
42	Taxane-mediated radiosensitization derives from chromosomal missegregation on tripolar mitotic spindles orchestrated by AURKA and TPX2. Oncogene, 2018, 37, 52-62.	5.9	31
43	Kupffer Cell-Derived Tnf Triggers Cholangiocellular Tumorigenesis through JNK due to Chronic Mitochondrial Dysfunction and ROS. Cancer Cell, 2017, 31, 771-789.e6.	16.8	140
44	InÂVitro Generation of Vascular Wall-Resident Multipotent Stem Cells ofÂMesenchymal Nature from Murine Induced Pluripotent Stem Cells. Stem Cell Reports, 2017, 8, 919-932.	4.8	20
45	A Dual Role of Caspase-8 in Triggering and Sensing Proliferation-Associated DNA Damage, a Key Determinant of Liver Cancer Development. Cancer Cell, 2017, 32, 342-359.e10.	16.8	122
46	Genomic amplification of Fanconi anemia complementation group A (FancA) in head and neck squamous cell carcinoma (HNSCC): Cellular mechanisms of radioresistance and clinical relevance. Cancer Letters, 2017, 386, 87-99.	7.2	21
47	Interconnection between DNA damage senescence inflammation and cancer. Frontiers in Bioscience - Landmark, 2017, 22, 348-369.	3.0	24
48	Investigation on tissue specific effects of pro-apoptotic micro RNAs revealed miR-147b as a potential biomarker in ovarian cancer prognosis. Oncotarget, 2017, 8, 18773-18791.	1.8	22
49	A Critical Evaluation of the PAXgene Tissue Fixation System. American Journal of Clinical Pathology, 2016, 146, 25-40.	0.7	37
50	Multiplexed pancreatic genome engineering and cancer induction by transfection-based CRISPR/Cas9 delivery in mice. Nature Communications, 2016, 7, 10770.	12.8	145
51	Transcriptomic analyses of the radiation response in head and neck squamous cell carcinoma subclones with different radiation sensitivity: time-course gene expression profiles and gene association networks. Radiation Oncology, 2016, 11, 94.	2.7	37
52	Differential Response and Priming Dose Effect on the Proteome of Human Fibroblast and Stem Cells Induced by Exposure to Low Doses of Ionizing Radiation. Radiation Research, 2016, 185, 299.	1.5	16
53	Integration of a radiation biomarker into modeling of thyroid carcinogenesis and post-Chernobyl risk assessment. Carcinogenesis, 2016, 37, bgw102.	2.8	22
54	Dual Role of the Adaptive Immune System in Liver Injury and Hepatocellular Carcinoma Development. Cancer Cell, 2016, 30, 308-323.	16.8	68

#	Article	IF	CITATIONS
55	Gene signature of the post-Chernobyl papillary thyroid cancer. European Journal of Nuclear Medicine and Molecular Imaging, 2016, 43, 1267-1277.	6.4	61
56	Therapy with Multipotent Mesenchymal Stromal Cells Protects Lungs from Radiation-Induced Injury and Reduces the Risk of Lung Metastasis. Antioxidants and Redox Signaling, 2016, 24, 53-69.	5.4	47
57	Depletion of Histone Demethylase Jarid1A Resulting in Histone Hyperacetylation and Radiation Sensitivity Does Not Affect DNA Double-Strand Break Repair. PLoS ONE, 2016, 11, e0156599.	2.5	15
58	Natural Cubic Spline Regression Modeling Followed by Dynamic Network Reconstruction for the Identification of Radiation-Sensitivity Gene Association Networks from Time-Course Transcriptome Data. PLoS ONE, 2016, 11, e0160791.	2.5	31
59	A 4-miRNA signature predicts the therapeutic outcome of glioblastoma. Oncotarget, 2016, 7, 45764-45775.	1.8	35
60	CFAssay: statistical analysis of the colony formation assay. Radiation Oncology, 2015, 10, 223.	2.7	55
61	Integrative analysis of the microRNA-mRNA response to radiochemotherapy in primary head and neck squamous cell carcinoma cells. BMC Genomics, 2015, 16, 654.	2.8	10
62	MicroRNA-Target Network Inference and Local Network Enrichment Analysis Identify Two microRNA Clusters with Distinct Functions in Head and Neck Squamous Cell Carcinoma. International Journal of Molecular Sciences, 2015, 16, 30204-30222.	4.1	12
63	Dose-dependent expression of CLIP2 in post-Chernobyl papillary thyroid carcinomas. Carcinogenesis, 2015, 36, 748-756.	2.8	25
64	Simultaneous β1 integrin-EGFR Targeting and Radiosensitization of Human Head and Neck Cancer. Journal of the National Cancer Institute, 2015, 107, .	6.3	78
65	Association of Radiation-Induced Genes with Noncancer Chronic Diseases in Mayak Workers Occupationally Exposed to Prolonged Radiation. Radiation Research, 2015, 183, 249.	1.5	22
66	Mechanisms of the induction of apoptosis mediated by radiation-induced cytokine release. Radiation Protection Dosimetry, 2015, 166, 165-169.	0.8	10
67	Model Matters: Differences in Orthotopic Rat Hepatocellular Carcinoma Physiology Determine Therapy Response to Sorafenib. Clinical Cancer Research, 2015, 21, 4440-4450.	7.0	25
68	Circulating microRNAs as prognostic therapy biomarkers in head and neck cancer patients. British Journal of Cancer, 2015, 113, 76-82.	6.4	114
69	Genomic copy number analysis of Chernobyl papillary thyroid carcinoma in the Ukrainian–American Cohort. Carcinogenesis, 2015, 36, 1381-1387.	2.8	11
70	CRISPR/Cas9 somatic multiplex-mutagenesis for high-throughput functional cancer genomics in mice. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 13982-13987.	7.1	172
71	Ectopic lymphoid structures function as microniches for tumor progenitor cells in hepatocellular carcinoma. Nature Immunology, 2015, 16, 1235-1244.	14.5	278
72	CLIP2 as radiation biomarker in papillary thyroid carcinoma. Oncogene, 2015, 34, 3917-3925.	5.9	41

#	Article	IF	CITATIONS
73	Hepatocellular carcinoma originates from hepatocytes and not from the progenitor/biliary compartment. Journal of Clinical Investigation, 2015, 125, 3891-3903.	8.2	175
74	Gene Expression Analysis in Mayak Workers With Prolonged Occupational Radiation Exposure. Health Physics, 2014, 106, 664-676.	0.5	11
75	Integrative radiation systems biology. Radiation Oncology, 2014, 9, 21.	2.7	19
76	Independent Validation of Candidate Genes Identified after a Whole Genome Screening on Mayak Workers Exposed to Prolonged Occupational Radiation. Radiation Research, 2014, 182, 299.	1.5	11
77	Metabolic Activation of Intrahepatic CD8+ T Cells and NKT Cells Causes Nonalcoholic Steatohepatitis and Liver Cancer via Cross-Talk with Hepatocytes. Cancer Cell, 2014, 26, 549-564.	16.8	531
78	Anterior gradient protein 2 promotes survival, migration and invasion of papillary thyroid carcinoma cells. Molecular Cancer, 2014, 13, 160.	19.2	22
79	Analysis of Chromosomal Aberrations in Murine HCC. Methods in Molecular Biology, 2014, 1193, 213-226.	0.9	0
80	Changes in circulating microRNAs after radiochemotherapy in head and neck cancer patients. Radiation Oncology, 2013, 8, 296.	2.7	88
81	RIP3 Inhibits Inflammatory Hepatocarcinogenesis but Promotes Cholestasis by Controlling Caspase-8- and JNK-Dependent Compensatory Cell Proliferation. Cell Reports, 2013, 4, 776-790.	6.4	124
82	Novel candidate genes of thyroid tumourigenesis identified in Trk-T1 transgenic mice. Endocrine-Related Cancer, 2012, 19, 409-421.	3.1	22
83	MicroRNA profiling with correlation to gene expression revealed the oncogenic miR-17-92 cluster to be up-regulated in osteosarcoma. Cancer Genetics, 2012, 205, 212-219.	0.4	60
84	Matching of array CGH and gene expression microarray features for the purpose of integrative genomic analyses. BMC Bioinformatics, 2012, 13, 80.	2.6	14
85	The Chernobyl Tissue Bank — A Repository for Biomaterial and Data Used in Integrative and Systems Biology Modeling the Human Response to Radiation. Genes, 2012, 3, 278-290.	2.4	4
86	A gene expression signature distinguishes normal tissues of sporadic and radiation-induced papillary thyroid carcinomas. British Journal of Cancer, 2012, 107, 994-1000.	6.4	111
87	S100-A10, thioredoxin, and S100-A6 as biomarkers of papillary thyroid carcinoma with lymph node metastasis identified by MALDI Imaging. Journal of Molecular Medicine, 2012, 90, 163-174.	3.9	56
88	Array comparative genomic hybridization identifies novel potential therapeutic targets in cholangiocarcinoma. Hpb, 2011, 13, 309-319.	0.3	33
89	DNA Copy Number Alterations in Radiation-induced Thyroid Cancer. Clinical Oncology, 2011, 23, 289-296.	1.4	14
90	Integrating Research on Thyroid Cancer after Chernobyl — The Chernobyl Tissue Bank. Clinical Oncology, 2011, 23, 276-281.	1.4	16

6

#	Article	IF	CITATIONS
91	Gain of chromosome band 7q11 in papillary thyroid carcinomas of young patients is associated with exposure to low-dose irradiation. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 9595-9600.	7.1	70
92	Novel gene rearrangements in transformed breast cells identified by high-resolution breakpoint analysis of chromosomal aberrations. Endocrine-Related Cancer, 2010, 17, 87-98.	3.1	33
93	Chromosomal aberrations in thyroid follicular-cell neoplasia: in the search of novel oncogenes and tumour suppressor genes. Molecular and Cellular Endocrinology, 2010, 321, 57-66.	3.2	10
94	Molecular rearrangements in papillary thyroid carcinomas. Clinica Chimica Acta, 2010, 411, 301-308.	1.1	17
95	RET/PTC Rearrangement Occurring in Primary Peritoneal Carcinoma. International Journal of Surgical Pathology, 2009, 17, 187-197.	0.8	15
96	Chromosomal changes characterize head and neck cancer with poor prognosis. Journal of Molecular Medicine, 2008, 86, 1353-1365.	3.9	33
97	Array CGH demonstrates characteristic aberration signatures in human papillary thyroid carcinomas governed by RET/PTC. Oncogene, 2008, 27, 4592-4602.	5.9	34
98	High resolution array-CGH analysis of single cells. Nucleic Acids Research, 2007, 35, e15-e15.	14.5	136
99	RET/Papillary Thyroid Cancer Rearrangement in Nonneoplastic Thyrocytes: Follicular Cells of Hashimoto's Thyroiditis Share Low-Level Recombination Events with a Subset of Papillary Carcinoma. Journal of Clinical Endocrinology and Metabolism, 2006, 91, 2414-2423.	3.6	175
100	RET rearrangements in post-Chernobyl papillary thyroid carcinomas with a short latency analysed by interphase FISH. British Journal of Cancer, 2006, 94, 1472-1477.	6.4	34
101	Gene amplification of atypical PKC-bindingPARD3 in radiation-transformed neoplastic retinal pigment epithelial cell lines. Genes Chromosomes and Cancer, 2004, 40, 55-59.	2.8	10
102	Heterogeneity in the Distribution ofRET/PTCRearrangements within Individual Post-Chernobyl Papillary Thyroid Carcinomas. Journal of Clinical Endocrinology and Metabolism, 2004, 89, 4272-4279.	3.6	127