Wei-Wei Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2573259/publications.pdf

Version: 2024-02-01

38720 37183 10,094 174 50 96 citations h-index g-index papers 179 179 179 9305 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Ising pairing in superconducting NbSe2 atomicÂlayers. Nature Physics, 2016, 12, 139-143.	6.5	806
2	High-precision realization of robust quantum anomalous Hall state in a hard ferromagnetic topological insulator. Nature Materials, 2015, 14, 473-477.	13.3	765
3	Photoelectrochemical bioanalysis: the state of the art. Chemical Society Reviews, 2015, 44, 729-741.	18.7	750
4	Photoelectrochemical DNA Biosensors. Chemical Reviews, 2014, 114, 7421-7441.	23.0	722
5	Correlated metals as transparent conductors. Nature Materials, 2016, 15, 204-210.	13.3	291
6	Highly Sensitive Photoelectrochemical Immunoassay with Enhanced Amplification Using Horseradish Peroxidase Induced Biocatalytic Precipitation on a CdS Quantum Dots Multilayer Electrode. Analytical Chemistry, 2012, 84, 917-923.	3.2	270
7	Photoelectrochemical Immunoassays. Analytical Chemistry, 2018, 90, 615-627.	3.2	255
8	Photoelectrochemical enzymatic biosensors. Biosensors and Bioelectronics, 2017, 92, 294-304.	5.3	231
9	<i>In Situ</i> Enzymatic Ascorbic Acid Production as Electron Donor for CdS Quantum Dots Equipped TiO ₂ Nanotubes: A General and Efficient Approach for New Photoelectrochemical Immunoassay. Analytical Chemistry, 2012, 84, 10518-10521.	3.2	210
10	Quantum Dots: Electrochemiluminescent and Photoelectrochemical Bioanalysis. Analytical Chemistry, 2015, 87, 9520-9531.	3.2	200
11	Energy transfer between CdS quantum dots and Au nanoparticles in photoelectrochemical detection. Chemical Communications, 2011, 47, 10990.	2.2	177
12	Exciton-Plasmon Interactions between CdS Quantum Dots and Ag Nanoparticles in Photoelectrochemical System and Its Biosensing Application. Analytical Chemistry, 2012, 84, 5892-5897.	3.2	174
13	Hybrid PbS Quantum Dot/Nanoporous NiO Film Nanostructure: Preparation, Characterization, and Application for a Self-Powered Cathodic Photoelectrochemical Biosensor. Analytical Chemistry, 2017, 89, 8070-8078.	3.2	149
14	Low Ru loading RuO2/(Co,Mn)3O4 nanocomposite with modulated electronic structure for efficient oxygen evolution reaction in acid. Applied Catalysis B: Environmental, 2021, 297, 120442.	10.8	128
15	Zero-Field Dissipationless Chiral Edge Transport and the Nature of Dissipation in the Quantum Anomalous Hall State. Physical Review Letters, 2015, 115, 057206.	2.9	107
16	Acetylcholine Esterase Antibodies on BiOI Nanoflakes/TiO ₂ Nanoparticles Electrode: A Case of Application for General Photoelectrochemical Enzymatic Analysis. Analytical Chemistry, 2013, 85, 11686-11690.	3.2	106
17	Gold Nanoparticle Couples with Entropy-Driven Toehold-Mediated DNA Strand Displacement Reaction on Magnetic Beads: Toward Ultrasensitive Energy-Transfer-Based Photoelectrochemical Detection of miRNA-141 in Real Blood Sample. Analytical Chemistry, 2018, 90, 11892-11898.	3.2	102
18	Simultaneous Photoelectrochemical Immunoassay of Dual Cardiac Markers Using Specific Enzyme Tags: A Proof of Principle for Multiplexed Bioanalysis. Analytical Chemistry, 2016, 88, 1990-1994.	3.2	97

#	Article	IF	CITATIONS
19	Alkaline Phosphatase Tagged Antibodies on Gold Nanoparticles/TiO ₂ Nanotubes Electrode: A Plasmonic Strategy for Label-Free and Amplified Photoelectrochemical Immunoassay. Analytical Chemistry, 2016, 88, 5626-5630.	3.2	96
20	Photoelectrochemical detection of metal ions. Analyst, The, 2016, 141, 4262-4271.	1.7	93
21	Recent Progress on Topological Structures in Ferroic Thin Films and Heterostructures. Advanced Materials, 2021, 33, e2000857.	11.1	84
22	A General Strategy for Photoelectrochemical Immunoassay Using an Enzyme Label Combined with a CdS Quantum Dot/TiO ₂ Nanoparticle Composite Electrode. Analytical Chemistry, 2014, 86, 11513-11516.	3 . 2	83
23	Direct imaging of electron transfer and its influence on superconducting pairing at FeSe/SrTiO ₃ interface. Science Advances, 2018, 4, eaao2682.	4.7	82
24	Bilayer Tubular Micromotors for Simultaneous Environmental Monitoring and Remediation. ACS Applied Materials & District Science (2018, 10, 35099-35107.	4.0	81
25	Experimental verification of the van vieck Nature of Long-Range Ferromagnetic Order in the Vanadium-Doped Three-Dimensional Topological Insulator <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:m< td=""><td>2.9 nl:mn>2<!--</td--><td>79 mml:mn></td></td></mml:m<></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:math>	2.9 nl:mn>2 </td <td>79 mml:mn></td>	79 mml:mn>
26	Quantum-dots-based photoelectrochemical bioanalysis highlighted with recent examples. Biosensors and Bioelectronics, 2017, 94, 207-218.	5 . 3	79
27	The coupling of localized surface plasmon resonance-based photoelectrochemistry and nanoparticle size effect: towards novel plasmonic photoelectrochemical biosensing. Chemical Communications, 2012, 48, 895-897.	2.2	75
28	An Integrated Electrochemical Nanodevice for Intracellular RNA Collection and Detection in Single Living Cell. Angewandte Chemie - International Edition, 2021, 60, 13244-13250.	7.2	75
29	Bismuth Oxyiodide Couples with Glucose Oxidase: A Special Synergized Dual-Catalysis Mechanism for Photoelectrochemical Enzymatic Bioanalysis. ACS Applied Materials & Samp; Interfaces, 2018, 10, 3372-3379.	4.0	74
30	Nanochannels Photoelectrochemical Biosensor. Analytical Chemistry, 2018, 90, 2341-2347.	3.2	73
31	Boosting the capacity of biomass-based supercapacitors using carbon materials of wood derivatives and redox molecules from plants. Journal of Materials Chemistry A, 2021, 9, 11839-11852.	5.2	72
32	Surfactant-Free Synthesis of Graphene Oxide Coated Silver Nanoparticles for SERS Biosensing and Intracellular Drug Delivery. ACS Applied Nano Materials, 2018, 1, 2748-2753.	2.4	71
33	DNA Labeling Generates a Unique Amplification Probe for Sensitive Photoelectrochemical Immunoassay of HIV-1 p24 Antigen. Analytical Chemistry, 2015, 87, 5496-5499.	3.2	70
34	Immunogold labeling-induced synergy effect for amplified photoelectrochemical immunoassay of prostate-specific antigen. Chemical Communications, 2012, 48, 5253.	2.2	69
35	Cu Nanoclusters-Encapsulated Liposomes: Toward Sensitive Liposomal Photoelectrochemical Immunoassay. Analytical Chemistry, 2018, 90, 2749-2755.	3.2	69
36	Photoelectrochemical-Chemical-Chemical Redox Cycling for Advanced Signal Amplification: Proof-of-Concept Toward Ultrasensitive Photoelectrochemical Bioanalysis. Analytical Chemistry, 2018, 90, 12347-12351.	3.2	69

#	Article	IF	CITATIONS
37	Protein Binding Bends the Gold Nanoparticle Capped DNA Sequence: Toward Novel Energy-Transfer-Based Photoelectrochemical Protein Detection. Analytical Chemistry, 2016, 88, 3864-3871.	3.2	67
38	Photogenerated Hole-Induced Chemical Redox Cycling on Bi ₂ O ₇ Heterojunction: Toward General Amplified Split-Type Photoelectrochemical Immunoassay. ACS Sensors, 2018, 3, 1087-1092.	4.0	67
39	In Situ Modification of a Semiconductor Surface by an Enzymatic Process: A General Strategy for Photoelectrochemical Bioanalysis. Analytical Chemistry, 2013, 85, 8503-8506.	3.2	65
40	Invoking Direct Exciton–Plasmon Interactions by Catalytic Ag Deposition on Au Nanoparticles: Photoelectrochemical Bioanalysis with High Efficiency. Analytical Chemistry, 2016, 88, 4183-4187.	3.2	65
41	Wearable Circuits Sintered at Room Temperature Directly on the Skin Surface for Health Monitoring. ACS Applied Materials & Directly on the Skin Surface for Health Monitoring.	4.0	65
42	Dual Functional Molecular Imprinted Polymer-Modified Organometal Lead Halide Perovskite: Synthesis and Application for Photoelectrochemical Sensing of Salicylic Acid. Analytical Chemistry, 2019, 91, 9356-9360.	3.2	64
43	An Integrated Photoelectrochemical Nanotool for Intracellular Drug Delivery and Evaluation of Treatment Effect. Angewandte Chemie - International Edition, 2021, 60, 25762-25765.	7.2	64
44	Photoelectrochemical Bioanalysis Platform of Gold Nanoparticles Equipped Perovskite Bi ₄ NbO ₈ Cl. Analytical Chemistry, 2017, 89, 7869-7875.	3.2	62
45	Recent advances in the use of quantum dots for photoelectrochemical bioanalysis. Nanoscale, 2016, 8, 17407-17414.	2.8	60
46	Liposome-Mediated in Situ Formation of AgI/Ag/BiOI Z-Scheme Heterojunction on Foamed Nickel Electrode: A Proof-of-Concept Study for Cathodic Liposomal Photoelectrochemical Bioanalysis. Analytical Chemistry, 2019, 91, 3800-3804.	3.2	56
47	Enediol-Ligands-Encapsulated Liposomes Enables Sensitive Immunoassay: A Proof-of-Concept for General Liposomes-Based Photoelectrochemical Bioanalysis. Analytical Chemistry, 2017, 89, 6300-6304.	3.2	54
48	Semiconducting Organic–Inorganic Nanodots Heterojunctions: Platforms for General Photoelectrochemical Bioanalysis Application. Analytical Chemistry, 2018, 90, 3759-3765.	3.2	54
49	Organic Photoâ€Electrochemical Transistorâ€Based Biosensor: A Proofâ€ofâ€Concept Study toward Highly Sensitive DNA Detection. Advanced Healthcare Materials, 2018, 7, e1800536.	3.9	54
50	Ag nanoclusters could efficiently quench the photoresponse of CdS quantum dots for novel energy transfer-based photoelectrochemical bioanalysis. Biosensors and Bioelectronics, 2016, 85, 930-934.	5.3	53
51	Interfacial reaction of intermetallic compounds of ultrasonic-assisted brazed joints between dissimilar alloys of Ti 6Al 4V and Al 4Cu 1Mg. Ultrasonics Sonochemistry, 2011, 18, 1062-1067.	3.8	52
52	Observation of the Quantum Anomalous Hall Insulator to Anderson Insulator Quantum Phase Transition and its Scaling Behavior. Physical Review Letters, 2016, 117, 126802.	2.9	52
53	Efficient CsPbBr ₃ Nanoplatelet-Based Blue Light-Emitting Diodes Enabled by Engineered Surface Ligands. ACS Energy Letters, 2022, 7, 1137-1145.	8.8	52
54	Polymer Dots for Photoelectrochemical Bioanalysis. Analytical Chemistry, 2017, 89, 4945-4950.	3.2	51

#	Article	lF	CITATIONS
55	Semiconducting CuO Nanotubes: Synthesis, Characterization, and Bifunctional Photocathodic Enzymatic Bioanalysis. Analytical Chemistry, 2018, 90, 5439-5444.	3.2	50
56	Energy Transfer between Semiconducting Polymer Dots and Gold Nanoparticles in a Photoelectrochemical System: A Case Application for Cathodic Bioanalysis. Analytical Chemistry, 2018, 90, 4277-4281.	3.2	49
57	Dropletâ€based microfluidics systems in biomedical applications. Electrophoresis, 2019, 40, 1580-1590.	1.3	49
58	Enzyme-Initiated Quinone-Chitosan Conjugation Chemistry: Toward A General <i>in Situ</i> Strategy for High-Throughput Photoelectrochemical Enzymatic Bioanalysis. Analytical Chemistry, 2018, 90, 1492-1497.	3.2	48
59	Bismuthoxyiodide Nanoflakes/Titania Nanotubes Arrayed p-n Heterojunction and Its Application for Photoelectrochemical Bioanalysis. Scientific Reports, 2014, 4, 4426.	1.6	45
60	Three-Dimensional TiO ₂ @Cu ₂ O@Nickel Foam Electrodes: Design, Characterization, and Validation of O ₂ -Independent Photocathodic Enzymatic Bioanalysis. ACS Applied Materials & Design, 11, 25702-25707.	4.0	43
61	Improved Oxygen Reduction Reaction Activity of Nanostructured CoS ₂ through Electrochemical Tuning. ACS Applied Energy Materials, 2019, 2, 8605-8614.	2.5	42
62	Cell surface carbohydrates evaluation via a photoelectrochemical approach. Chemical Communications, 2012, 48, 9456.	2.2	41
63	Gradient Quasiâ€Liquid Surface Enabled Selfâ€Propulsion of Highly Wetting Liquids. Advanced Functional Materials, 2021, 31, 2008614.	7.8	41
64	A Polymer Dots-Based Photoelectrochemical pH Sensor: Simplicity, High Sensitivity, and Broad-Range pH Measurement. Analytical Chemistry, 2018, 90, 8300-8303.	3.2	40
65	Multifunctional Hydrogel Hybridâ€Gated Organic Photoelectrochemical Transistor for Biosensing. Advanced Functional Materials, 2022, 32, .	7.8	40
66	Hierarchical CulnS 2 -based heterostructure: Application for photocathodic bioanalysis of sarcosine. Biosensors and Bioelectronics, 2018, 107, 230-236.	5. 3	39
67	Regulating Lightâ€Sensitive Gate of Organic Photoelectrochemical Transistor toward Sensitive Biodetection at Zero Gate Bias. Small Structures, 2021, 2, 2100087.	6.9	38
68	Redox-Sensitive Hyaluronic Acid Polymer Prodrug Nanoparticles for Enhancing Intracellular Drug Self-Delivery and Targeted Cancer Therapy. ACS Biomaterials Science and Engineering, 2020, 6, 4106-4115.	2.6	37
69	Nanoporous Semiconductor Electrode Captures the Quantum Dots: Toward Ultrasensitive Signal-On Liposomal Photoelectrochemical Immunoassay. Analytical Chemistry, 2019, 91, 3795-3799.	3.2	36
70	Enhanced-performance flexible supercapacitor based on Pt-doped MoS2. Materials Letters, 2019, 252, 173-177.	1.3	35
71	Fast electrochemical deposition of CuO/Cu2O heterojunction photoelectrode: Preparation and application for rapid cathodic photoelectrochemical detection of L-cysteine. Sensors and Actuators B: Chemical, 2019, 290, 312-317.	4.0	35
72	Ru(NH ₃) ₆ ³⁺ /Ru(NH ₃) ₆ ²⁺ -Mediate Redox Cycling: Toward Enhanced Triple Signal Amplification for Photoelectrochemical Immunoassay. Analytical Chemistry, 2019, 91, 3768-3772.	ed 3.2	34

#	Article	IF	CITATIONS
73	Boosting the Efficiency of NiO _{<i>x</i>} -Based Perovskite Light-Emitting Diodes by Interface Engineering. ACS Applied Materials & Samp; Interfaces, 2020, 12, 53528-53536.	4.0	32
74	Multi-layer silver nanowire/polyethylene terephthalate mesh structure for highly efficient transparent electromagnetic interference shielding. Nanotechnology, 2020, 31, 185303.	1.3	32
75	Proximity-effect-induced Superconducting Gap in Topological Surface States – A Point Contact Spectroscopy Study of NbSe2/Bi2Se3 Superconductor-Topological Insulator Heterostructures. Scientific Reports, 2017, 7, 7631.	1.6	31
76	Activatable QD-Based Near-Infrared Fluorescence Probe for Sensitive Detection and Imaging of DNA. ACS Applied Materials & Detection and Imaging of DNA.	4.0	31
77	Target-Triggered Assembly in a Nanopipette for Electrochemical Single-Cell Analysis. Analytical Chemistry, 2021, 93, 1200-1208.	3.2	31
78	Interface-induced sign reversal of the anomalous Hall effect in magnetic topological insulator heterostructures. Nature Communications, 2021, 12, 79.	5.8	31
79	Dirac-electron-mediated magnetic proximity effect in topological insulator/magnetic insulator heterostructures. Physical Review B, 2017, 96, .	1.1	29
80	Unconventional planar Hall effect in exchange-coupled topological insulator–ferromagnetic insulator heterostructures. Physical Review B, 2018, 98, .	1.1	29
81	Three-Dimensional CdS@Carbon Fiber Networks: Innovative Synthesis and Application as a General Platform for Photoelectrochemical Bioanalysis. Analytical Chemistry, 2019, 91, 6419-6423.	3.2	29
82	Ferroelectric Perovskite Oxide@TiO ₂ Nanorod Heterostructures: Preparation, Characterization, and Application as a Platform for Photoelectrochemical Bioanalysis. Analytical Chemistry, 2018, 90, 10803-10811.	3.2	28
83	Highly stretchable patternable conductive circuits and wearable strain sensors based on polydimethylsiloxane and silver nanoparticles. Nanotechnology, 2019, 30, 185501.	1.3	28
84	Binding-induced formation of DNAzyme on an Au@Ag nanoparticles/TiO2 nanorods electrode: Stimulating biocatalytic precipitation amplification for plasmonic photoelectrochemical bioanalysis. Biosensors and Bioelectronics, 2019, 134, 103-108.	5.3	28
85	3D Semiconducting Polymer/Graphene Networks: Toward Sensitive Photocathodic Enzymatic Bioanalysis. Analytical Chemistry, 2018, 90, 9687-9690.	3.2	27
86	Pressure-induced superconductivity and topological phase transitions in the topological nodal-line semimetal SrAs3. Npj Quantum Materials, 2020, 5, .	1.8	27
87	A Supersmall Single-Cell Nanosensor for Intracellular K ⁺ Detection. CCS Chemistry, 2021, 3, 2359-2367.	4.6	26
88	Gold Nanoparticle-Induced Photocurrent Quenching and Recovery of Polymer Dots: Toward Signal-On Energy-Transfer-Based Photocathodic Bioanalysis of Telomerase Activity in Cell Extracts. Analytical Chemistry, 2019, 91, 6403-6407.	3.2	25
89	A Practical Electrochemical Nanotool for Facile Quantification of Amino Acids in Single Cell. Small, 2021, 17, e2100503.	5 . 2	25
90	Enhanced organicâ-'inorganic heterojunction of polypyrrole@Bi2WO6: Fabrication and application for sensitive photoelectrochemical immunoassay of creatine kinase-MB. Biosensors and Bioelectronics, 2019, 140, 111349.	5.3	24

#	Article	IF	CITATIONS
91	DNA sequence functionalized with heterogeneous core–satellite nanoassembly for novel energy-transfer-based photoelectrochemical bioanalysis. Biosensors and Bioelectronics, 2017, 91, 293-298.	5.3	23
92	Hybridization chain reaction for regulating surface capacitance of organic photoelectrochemical transistor toward sensitive miRNA detection. Biosensors and Bioelectronics, 2022, 209, 114224.	5.3	23
93	Photocontrolled Nanopipette Biosensor for ATP Gradient Electroanalysis of Single Living Cells. ACS Sensors, 2021, 6, 1529-1535.	4.0	22
94	Ascorbic acid-mediated organic photoelectrochemical transistor sensing strategy for highly sensitive detection of heart-type fatty acid binding protein. Biosensors and Bioelectronics, 2022, 201, 113958.	5.3	22
95	Enhanced Electrical and Mechanical Properties of a Printed Bimodal Silver Nanoparticle Ink for Flexible Electronics. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1800007.	0.8	21
96	Development of a Ni-Doped VAl ₃ Topological Semimetal with a Significantly Enhanced HER Catalytic Performance. Journal of Physical Chemistry Letters, 2021, 12, 3740-3748.	2.1	21
97	Engineering the breaking of time-reversal symmetry in gate-tunable hybrid ferromagnet/topological insulator heterostructures. Npj Quantum Materials, 2018, 3, .	1.8	20
98	Multiple Weyl fermions in the noncentrosymmetric semimetal LaAlSi. Physical Review B, 2021, 103, .	1.1	20
99	Bipolar Modulation of the Ionic Circuit for Generic Organic Photoelectrochemical Transistor Logic and Sensor. Advanced Optical Materials, 2022, 10, .	3.6	20
100	Self-Powered Multifunctional Electronic Skin Based on Carbon Nanotubes/Poly(dimethylsiloxane) for Health Monitoring. ACS Applied Materials & Samp; Interfaces, 2022, 14, 21406-21417.	4.0	20
101	Silverâ€Nanowire Meshâ€Structured Transparent Conductive Film with Improved Transparent Conductive Properties and Mechanical Performance. Advanced Materials Technologies, 2019, 4, 1900194.	3.0	19
102	A flexible and conductive metallic paper-based current collector with energy storage capability in supercapacitor electrodes. Dalton Transactions, 2019, 48, 7659-7665.	1.6	19
103	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow><mml:mi mathvariant="normal">B<mml:msub><mml:mi mathvariant="normal">i<mml:mn>2</mml:mn></mml:mi </mml:msub><mml:mi mathvariant="normal">T<mml:msub><mml:mi< td=""><td>1.1</td><td>18</td></mml:mi<></mml:msub></mml:mi </mml:mi </mml:mrow>	1.1	18
104	mathyariant="normal" ses/mml; missemml; mass/mml; mass/mml; missems s/mml; missem	1.4	17
105	Facile <i>in situ</i> growth of ZnO nanosheets standing on Ni foam as binder-free anodes for lithium ion batteries. RSC Advances, 2019, 9, 19253-19260.	1.7	17
106	Preparation of an AgI/CuBi2O4 heterojunction on a fluorine-doped tin oxide electrode for cathodic photoelectrochemical assays: application to the detection of L-cysteine. Mikrochimica Acta, 2019, 186, 284.	2.5	17
107	Three-dimensional CdS nanosheet-enwrapped carbon fiber framework: Towards split-type CuO-mediated photoelectrochemical immunoassay. Biosensors and Bioelectronics, 2020, 148, 111836.	5.3	17
108	Integrated Resistive-Capacitive Strain Sensors Based on Polymer–Nanoparticle Composites. ACS Applied Nano Materials, 2020, 3, 4357-4366.	2.4	17

#	Article	IF	CITATIONS
109	Ultrasound-assisted extraction of bioactive alkaloids from <i>Phellodendri amurensis</i> cortex using deep eutectic solvent aqueous solutions. New Journal of Chemistry, 2020, 44, 9172-9178.	1.4	17
110	Magnetism-induced topological transition in EuAs3. Nature Communications, 2021, 12, 6970.	5.8	17
111	Stretchable multifunctional dielectric nanocomposites based on polydimethylsiloxane mixed with metal nanoparticles. Materials Research Express, 2020, 7, 015007.	0.8	16
112	Ultrasonic-accelerated metallurgical reaction of Sn/Ni composite solder: Principle, kinetics, microstructure, and joint properties. Ultrasonics Sonochemistry, 2020, 66, 105090.	3.8	16
113	Bulk Fermi surface of the layered superconductor <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>TaS</mml:mi><mml:msub><mml:m mathvariant="normal">e<mml:mn>3</mml:mn></mml:m></mml:msub></mml:mrow></mml:math> with three-dimensional strong topological state. Physical Review B. 2020. 101	i 1.1	16
114	Organic photoelectrochemical transistor detection of tear lysozyme. Sensors & Diagnostics, 2022, 1, 294-300.	1.9	16
115	Enhanced Anodic Electrochemiluminescence from Co ²⁺ â€Doped CdSe Nanocrystals for Alkaline Phosphatase Assay. Electroanalysis, 2013, 25, 951-958.	1.5	15
116	Target-induced formation of multiple DNAzymes in solid-state nanochannels: Toward innovative photoelectrochemical probing of telomerase activity. Biosensors and Bioelectronics, 2019, 142, 111564.	5.3	15
117	Self-Assembled Peptide Nanostructures for Photoelectrochemical Bioanalysis Application: A Proof-of-Concept Study. Analytical Chemistry, 2019, 91, 12606-12610.	3.2	15
118	Establishing Interfacial Charge-Transfer Transitions on Ferroelectric Perovskites: An Efficient Route for Photoelectrochemical Bioanalysis. ACS Sensors, 2020, 5, 3827-3832.	4.0	15
119	Highly flexible electromagnetic interference shielding films based on ultrathin Ni/Ag composites on paper substrates. Journal of Materials Science, 2021, 56, 5570-5580.	1.7	13
120	Tyrosinase-encapsulated liposomes: Toward enzyme-induced in situ sensitization of semiconductor for sensitive photoelectrochemical immunoassay. Biosensors and Bioelectronics, 2019, 136, 128-131.	5.3	12
121	Paper Information Recording and Security Protection Using Invisible Ink and Artificial Intelligence. ACS Applied Materials & Diterfaces, 2021, 13, 19443-19449.	4.0	12
122	Stretchable and conductive composites film with efficient electromagnetic interference shielding and absorptivity. Journal of Materials Science, 2020, 55, 8576-8590.	1.7	11
123	Vortex phase transitions in monolayer FeSe film on SrTiO ₃ . 2D Materials, 2016, 3, 024006.	2.0	10
124	Electric Field Tuning of Interlayer Coupling in Noncentrosymmetric 3R-MoS ₂ with an Electric Double Layer Interface. ACS Applied Materials & Double Layer Interface. ACS Applied Materials & Double Layer Interface.	4.0	10
125	Twin Nanopipettes for Real-Time Electrochemical Monitoring of Cytoplasmic Microviscosity at a Single-Cell Level. Analytical Chemistry, 2021, 93, 6831-6838.	3.2	10
126	Magnetic particles and cadmium sulfide nanoparticles tagging for signal-amplifying detection of nucleic acids. Science China Chemistry, 2011, 54, 1304-1310.	4.2	9

#	Article	IF	CITATIONS
127	Photoelectrochemical Probing of Cellular Interfaces and Evaluation of Cellular H ₂ S Production Based on In Situâ€Generated CdSâ€Enhanced TiO ₂ Nanotube Heterostructures. ChemElectroChem, 2017, 4, 1011-1015.	1.7	9
128	Ionic liquids-filled patterned cavities improve transmittance of transparent and stretchable electronic polydimethylsiloxane films. Journal of Materials Science, 2019, 54, 11134-11144.	1.7	9
129	Unique Redox Reaction between CuO Photocathode and Cysteine: Insight into the Mechanism for Cathodic Photoelectrochemical Bioanalysis. ACS Applied Bio Materials, 2019, 2, 2703-2707.	2.3	9
130	The de Haas-van Alphen quantum oscillations in a three-dimensional Dirac semimetal TiSb2. Applied Physics Letters, 2020, 116, 142103.	1.5	9
131	Strain engineering of quasi-1D layered TiS3 nanosheets toward giant anisotropic Raman and piezoresistance responses. Applied Physics Letters, 2021, 119, .	1.5	9
132	Synthesis and Properties of Azideâ€Functionalized Ionic Liquids as Attractive Hypergolic Fuels. Chemistry - an Asian Journal, 2019, 14, 2122-2128.	1.7	8
133	Enzymatic photoelectrochemical bioassay based on hierarchical CdS/NiO heterojunction for glucose determination. Mikrochimica Acta, 2021, 188, 243.	2.5	8
134	Recent Advances of Nanostructured Materials for Photoelectrochemical Bioanalysis. Chemosensors, 2022, 10, 14.	1.8	8
135	Nano oxide intermediate layer assisted room temperature sintering of ink-jet printed silver nanoparticles pattern. Nanotechnology, 2019, 30, 495302.	1.3	7
136	Redox-Sensitive Polymer Micelles Based on CD44 and Folic Acid Receptor for Intracellular Drug Delivery and Drug Controlled Release in Cancer Therapy. ACS Applied Bio Materials, 2019, 2, 4222-4232.	2.3	7
137	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow><mml:mi mathvariant="normal">C<mml:msub><mml:mi< td=""><td></td><td></td></mml:mi<></mml:msub></mml:mi </mml:mrow>		

9

#	Article	lF	CITATIONS
145	3D NiO nanoflakes/carbon fiber meshwork: Facile preparation and utilization as general platform for photocathodic bioanalysis. Analytica Chimica Acta, 2021, 1143, 173-180.	2.6	6
146	A facile fabrication of conjugated fluorescent nanoparticles and micro-scale patterned encryption via high resolution inkjet printing. Nanoscale, 2021, 13, 14337-14345.	2.8	6
147	NiCo 2 O 4 /C Coreâ€Shell Nanoneedles on Ni Foam for Allâ€Solidâ€State Asymmetric Supercapacitors. ChemistrySelect, 2020, 5, 5501-5506.	0.7	6
148	Highly stretchable and sensitive strain sensors with ginkgo-like sandwich architectures. Nanoscale Advances, 2022, 4, 1681-1693.	2.2	6
149	Dual topology in van der Waals-type superconductor Nb2S2C. Tungsten, 2023, 5, 357-363.	2.0	6
150	Lightâ€Fueled Organic Photoelectrochemical Transistor for Probing Membrane Protein in an Hâ€Cell. Advanced Materials Interfaces, 2022, 9, .	1.9	6
151	High-performance joining technology for aluminium matrix composites using ultrasonic-assisted brazing. Materials Science and Technology, 2018, 34, 660-663.	0.8	5
152	Low-temperature sintering of silver nanoparticles on paper by surface modification. Nanotechnology, 2019, 30, 505303.	1.3	5
153	Fabricating flexible wafer-size inorganic semiconductor devices. Journal of Materials Chemistry C, 2020, 8, 1915-1922.	2.7	5
154	de Haas-van Alphen Quantum Oscillations in BaSn3 Superconductor with Multiple Dirac Fermions. Chinese Physics Letters, 2020, 37, 087101.	1.3	5
155	Butyrylcholinesterase nanodepots with enhanced prophylactic and therapeutic performance for acute organophosphorus poisoning management. Journal of Materials Chemistry B, 2021, 9, 1877-1887.	2.9	5
156	Photoelectrochemical Cytosensors. Electroanalysis, 2022, 34, 947-955.	1.5	5
157	In situ chemical redox and functionalization of graphene oxide: toward new cathodic photoelectrochemical bioanalysis. Chemical Communications, 2019, 55, 10072-10075.	2.2	4
158	An invisible private 2D barcode design and implementation with tunable fluorescent nanoparticles. RSC Advances, 2019, 9, 37292-37299.	1.7	4
159	Domainâ€Engineered Flexible Ferrite Membrane for Novel Machine Learning Based Multimodal Flexible Sensing. Advanced Materials Interfaces, 2022, 9, .	1.9	4
160	Flash Nanoprecipitation Offers Largeâ€Format Fullâ€Color and Dualâ€Mode Fluorescence Patterns for Codesâ€inâ€Code Encryption and Antiâ€Counterfeiting. Advanced Photonics Research, 2022, 3, .	1.7	4
161	Broken cubic symmetry driven co-emergence of type-I and type-II Dirac points in topological crystalline insulator ThTaN ₃ . Journal of Physics Condensed Matter, 2019, 31, 295501.	0.7	3
162	Sensitive Detection of Caffeic Acid and Rutin via the Enhanced Anodic Electrochemiluminescence Signal of Luminol. Analytical Sciences, 2020, 36, 311-316.	0.8	3

#	Article	IF	CITATIONS
163	Photoemission Spectroscopic Evidence of Multiple Dirac Cones in Superconducting BaSn3. Chinese Physics Letters, 2021, 38, 107403.	1.3	3
164	Long-range superconducting proximity effect in nickel nanowires. Physical Review Research, 2022, 4, .	1.3	3
165	Self-assembly of nickel: from nanoparticles to foils with tunable magnetic properties. CrystEngComm, 2019, 21, 5317-5321.	1.3	2
166	Electrostatic and electrochemical charging mechanisms for electric-double-layer gating media based on a crystalline LaF3 solid electrolyte. APL Materials, 2021, 9, .	2.2	2
167	Fabricating different patterns of flexible inorganic semiconductor films via colloidal ink printing on textiles. Materials Letters, 2022, 307, 131079.	1.3	2
168	CdS Quantum Dots Modified Photoelectrochemical Biosensor for TATA-Binding Protein Probing. Methods in Molecular Biology, 2020, 2135, 237-247.	0.4	2
169	Topological states in the noncentrosymmetric superconductors LaPtSi and LaPtGe. Physical Review B, 2021, 104, .	1.1	2
170	Facile Gold-Nanoparticle Boosted Graphene Sensor Fabrication Enhanced Biochemical Signal Detection. Nanomaterials, 2022, 12, 1327.	1.9	2
171	Single-directional dynamic equilibrium between precipitation and dissolution in solid-aluminum/melted-tin system. Materials Letters, 2019, 236, 611-613.	1.3	1
172	Investigation of phonon modes in 2H-TaX2 (X = S/Se) flakes with electrostatic doping. Journal of Applied Physics, 2021, 130, 105302.	1.1	1
173	Recent Advances in Electrochemical Sensor and Biosensors for Environmental Contaminants. Nanotechnology in the Life Sciences, 2020, , 1-31.	0.4	1
174	Facile Conjugatedâ€Polymerâ€Based Flexible Lighting Fabrication and Microdeformation Monitoring. Advanced Photonics Research, 0, , 2200030.	1.7	0