
Vadim N Gladyshev

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2573037/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Characterization of Mammalian Selenoproteomes. Science, 2003, 300, 1439-1443.	6.0	2,019
2	Selenoproteins: Molecular Pathways and Physiological Roles. Physiological Reviews, 2014, 94, 739-777.	13.1	955
3	How Selenium Has Altered Our Understanding of the Genetic Code. Molecular and Cellular Biology, 2002, 22, 3565-3576.	1.1	601
4	Selenium and selenocysteine: roles in cancer, health, and development. Trends in Biochemical Sciences, 2014, 39, 112-120.	3.7	564
5	DNA methylation aging clocks: challenges and recommendations. Genome Biology, 2019, 20, 249.	3.8	552
6	Genome sequencing reveals insights into physiology and longevity of the naked mole rat. Nature, 2011, 479, 223-227.	13.7	517
7	Reprogramming to recover youthful epigenetic information and restore vision. Nature, 2020, 588, 124-129.	13.7	424
8	Using DNA Methylation Profiling to Evaluate Biological Age and Longevity Interventions. Cell Metabolism, 2017, 25, 954-960.e6.	7.2	314
9	LINE1 Derepression in Aged Wild-Type and SIRT6-Deficient Mice Drives Inflammation. Cell Metabolism, 2019, 29, 871-885.e5.	7.2	299
10	Methionine Sulfoxide Reduction in Mammals: Characterization of Methionine-R-Sulfoxide Reductases. Molecular Biology of the Cell, 2004, 15, 1055-1064.	0.9	282
11	Genome-wide ribosome profiling reveals complex translational regulation in response to oxidative stress. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 17394-17399.	3.3	279
12	Eukaryotic selenoproteins and selenoproteomes. Biochimica Et Biophysica Acta - General Subjects, 2009, 1790, 1424-1428.	1.1	271
13	Translation inhibitors cause abnormalities in ribosome profiling experiments. Nucleic Acids Research, 2014, 42, e134-e134.	6.5	251
14	SIRT6 Is Responsible for More Efficient DNA Double-Strand Break Repair in Long-Lived Species. Cell, 2019, 177, 622-638.e22.	13.5	225
15	Genome analysis reveals insights into physiology and longevity of the Brandt's bat Myotis brandtii. Nature Communications, 2013, 4, 2212.	5.8	213
16	Composition and Evolution of the Vertebrate and Mammalian Selenoproteomes. PLoS ONE, 2012, 7, e33066.	1.1	211
17	The Free Radical Theory of Aging Is Dead. Long Live the Damage Theory!. Antioxidants and Redox Signaling, 2014, 20, 727-731.	2.5	210
18	Selenoprotein Gene Nomenclature. Journal of Biological Chemistry, 2016, 291, 24036-24040.	1.6	207

#	Article	IF	CITATIONS
19	The prokaryotic selenoproteome. EMBO Reports, 2004, 5, 538-543.	2.0	203
20	Glutathione peroxidase 4 and vitamin E cooperatively prevent hepatocellular degeneration. Redox Biology, 2016, 9, 22-31.	3.9	201
21	MsrB1 and MICALs Regulate Actin Assembly and Macrophage Function via Reversible Stereoselective Methionine Oxidation. Molecular Cell, 2013, 51, 397-404.	4.5	196
22	Mechanisms of cancer resistance in long-lived mammals. Nature Reviews Cancer, 2018, 18, 433-441.	12.8	195
23	Evolutionary dynamics of eukaryotic selenoproteomes: large selenoproteomes may associate with aquatic life and small with terrestrial life. Genome Biology, 2007, 8, R198.	13.9	181
24	Aging: progressive decline in fitness due to the rising deleteriome adjusted by genetic, environmental, and stochastic processes. Aging Cell, 2016, 15, 594-602.	3.0	176
25	Comparative genetics of longevity and cancer: insights from long-lived rodents. Nature Reviews Genetics, 2014, 15, 531-540.	7.7	169
26	Adaptations to a Subterranean Environment and Longevity Revealed by the Analysis of Mole Rat Genomes. Cell Reports, 2014, 8, 1354-1364.	2.9	162
27	Functions and evolution of selenoprotein methionine sulfoxide reductases. Biochimica Et Biophysica Acta - General Subjects, 2009, 1790, 1471-1477.	1.1	149
28	Gene expression defines natural changes in mammalian lifespan. Aging Cell, 2015, 14, 352-365.	3.0	142
29	A whole lifespan mouse multi-tissue DNA methylation clock. ELife, 2018, 7, .	2.8	140
30	Ribonuclease selection for ribosome profiling. Nucleic Acids Research, 2017, 45, e6-e6.	6.5	134
31	DNA repair in species with extreme lifespan differences. Aging, 2015, 7, 1171-1182.	1.4	132
32	Dynamic evolution of selenocysteine utilization in bacteria: a balance between selenoprotein loss and evolution of selenocysteine from redox active cysteine residues. Genome Biology, 2006, 7, R94.	13.9	131
33	Selective Rescue of Selenoprotein Expression in Mice Lacking a Highly Specialized Methyl Group in Selenocysteine tRNA. Journal of Biological Chemistry, 2005, 280, 5542-5548.	1.6	129
34	Human Gut Microbiome Aging Clock Based on Taxonomic Profiling and Deep Learning. IScience, 2020, 23, 101199.	1.9	117
35	Comprehensive variation discovery and recovery of missing sequence in the pig genome using multiple de novo assemblies. Genome Research, 2017, 27, 865-874.	2.4	116
36	Protein synthesis and quality control in aging. Aging, 2018, 10, 4269-4288.	1.4	116

#	Article	IF	CITATIONS
37	The biological significance of methionine sulfoxide stereochemistry. Free Radical Biology and Medicine, 2011, 50, 221-227.	1.3	114
38	Identification and Application of Gene Expression Signatures Associated with Lifespan Extension. Cell Metabolism, 2019, 30, 573-593.e8.	7.2	113
39	An algorithm for identification of bacterial selenocysteine insertion sequence elements and selenoprotein genes. Bioinformatics, 2005, 21, 2580-2589.	1.8	112
40	Integrating cellular senescence with the concept of damage accumulation in aging: Relevance for clearance of senescent cells. Aging Cell, 2019, 18, e12841.	3.0	109
41	COVIDâ€19 is an emergent disease of aging. Aging Cell, 2020, 19, e13230.	3.0	107
42	Organization of the Mammalian Metabolome according to Organ Function, Lineage Specialization, and Longevity. Cell Metabolism, 2015, 22, 332-343.	7.2	104
43	Role of Reactive Oxygen Species-Mediated Signaling in Aging. Antioxidants and Redox Signaling, 2013, 19, 1362-1372.	2.5	102
44	Biohorology and biomarkers of aging: Current state-of-the-art, challenges and opportunities. Ageing Research Reviews, 2020, 60, 101050.	5.0	101
45	<i>INK4</i> locus of the tumor-resistant rodent, the naked mole rat, expresses a functional p15/p16 hybrid isoform. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 1053-1058.	3.3	92
46	Evolution of selenium utilization traits. Genome Biology, 2005, 6, R66.	13.9	91
47	NEDD9 targets <i>COL3A1</i> to promote endothelial fibrosis and pulmonary arterial hypertension. Science Translational Medicine, 2018, 10, .	5.8	89
48	Molecular signatures of longevity: Insights from cross-species comparative studies. Seminars in Cell and Developmental Biology, 2017, 70, 190-203.	2.3	88
49	Functional Analysis of Free Methionine-R-sulfoxide Reductase from Saccharomyces cerevisiae. Journal of Biological Chemistry, 2009, 284, 4354-4364.	1.6	83
50	Analysis of cancer genomes reveals basic features of human aging and its role in cancer development. Nature Communications, 2016, 7, 12157.	5.8	81
51	Population genomics of finless porpoises reveal an incipient cetacean species adapted to freshwater. Nature Communications, 2018, 9, 1276.	5.8	80
52	Multifaceted deregulation of gene expression and protein synthesis with age. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 15581-15590.	3.3	80
53	Methionine Sulfoxide Reductases Preferentially Reduce Unfolded Oxidized Proteins and Protect Cells from Oxidative Protein Unfolding. Journal of Biological Chemistry, 2012, 287, 24448-24459.	1.6	79
54	The origin of aging: imperfectness-driven non-random damage defines the aging process and control of lifespan. Trends in Genetics, 2013, 29, 506-512.	2.9	79

#	Article	IF	CITATIONS
55	SECISearch3 and Seblastian: new tools for prediction of SECIS elements and selenoproteins. Nucleic Acids Research, 2013, 41, e149-e149.	6.5	79
56	Regulation of Protein Function by Reversible Methionine Oxidation and the Role of Selenoprotein MsrB1. Antioxidants and Redox Signaling, 2015, 23, 814-822.	2.5	71
57	Mitochondrial redox sensing by the kinase ATM maintains cellular antioxidant capacity. Science Signaling, 2018, 11, .	1.6	71
58	Population Genomics Reveals Low Genetic Diversity and Adaptation to Hypoxia in Snub-Nosed Monkeys. Molecular Biology and Evolution, 2016, 33, 2670-2681.	3.5	69
59	Cell culture-based profiling across mammals reveals DNA repair and metabolism as determinants of species longevity. ELife, 2016, 5, .	2.8	69
60	Regulated methionine oxidation by monooxygenases. Free Radical Biology and Medicine, 2017, 109, 141-155.	1.3	67
61	Naked mole rats can undergo developmental, oncogene-induced and DNA damage-induced cellular senescence. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 1801-1806.	3.3	67
62	Epigenetic clocks reveal a rejuvenation event during embryogenesis followed by aging. Science Advances, 2021, 7, .	4.7	63
63	The transcriptome of the bowhead whale Balaena mysticetus reveals adaptations of the longest-lived mammal. Aging, 2014, 6, 879-899.	1.4	62
64	Global remodeling of the mouse <scp>DNA</scp> methylome during aging and in response to calorie restriction. Aging Cell, 2018, 17, e12738.	3.0	60
65	A pig BodyMap transcriptome reveals diverse tissue physiologies and evolutionary dynamics of transcription. Nature Communications, 2021, 12, 3715.	5.8	60
66	Profiling epigenetic age in single cells. Nature Aging, 2021, 1, 1189-1201.	5.3	59
67	Comparative analysis of genome maintenance genes in naked mole rat, mouse, and human. Aging Cell, 2015, 14, 288-291.	3.0	58
68	Non-enzymatic molecular damage as a prototypic driver of aging. Journal of Biological Chemistry, 2017, 292, 6029-6038.	1.6	57
69	Organization of the Mammalian Ionome According to Organ Origin, Lineage Specialization, and Longevity. Cell Reports, 2015, 13, 1319-1326.	2.9	56
70	Selenium Deficiency Is Associated with Pro-longevity Mechanisms. Cell Reports, 2019, 27, 2785-2797.e3.	2.9	56
71	Age- and diet-associated metabolome remodeling characterizes the aging process driven by damage accumulation. ELife, 2014, 3, e02077.	2.8	56
72	Translation fidelity coevolves with longevity. Aging Cell, 2017, 16, 988-993.	3.0	53

#	Article	IF	CITATIONS
73	Evidence that mutation accumulation does not cause aging in <i>Saccharomyces cerevisiae</i> . Aging Cell, 2015, 14, 366-371.	3.0	52
74	Molecular damage in aging. Nature Aging, 2021, 1, 1096-1106.	5.3	51
75	Monitoring methionine sulfoxide with stereospecific mechanism-based fluorescent sensors. Nature Chemical Biology, 2015, 11, 332-338.	3.9	50
76	Comparative transcriptomics of 5 high-altitude vertebrates and their low-altitude relatives. GigaScience, 2017, 6, 1-9.	3.3	50
77	Mammals Reduce Methionine-S-sulfoxide with MsrA and Are Unable to Reduce Methionine-R-sulfoxide, and This Function Can Be Restored with a Yeast Reductase. Journal of Biological Chemistry, 2008, 283, 28361-28369.	1.6	49
78	Selenoprotein H is an essential regulator of redox homeostasis that cooperates with p53 in development and tumorigenesis. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E5562-71.	3.3	49
79	Role of Selenof as a Gatekeeper of Secreted Disulfide-Rich Glycoproteins. Cell Reports, 2018, 23, 1387-1398.	2.9	49
80	Selenoproteins in colon cancer. Free Radical Biology and Medicine, 2018, 127, 14-25.	1.3	47
81	Selenophosphate synthetase 1 deficiency exacerbates osteoarthritis by dysregulating redox homeostasis. Nature Communications, 2022, 13, 779.	5.8	47
82	Evolution of selenophosphate synthetases: emergence and relocation of function through independent duplications and recurrent subfunctionalization. Genome Research, 2015, 25, 1256-1267.	2.4	46
83	On the cause of aging and control of lifespan. BioEssays, 2012, 34, 925-929.	1.2	44
84	Translation elongation rate varies among organs and decreases with age. Nucleic Acids Research, 2021, 49, e9-e9.	6.5	43
85	The Ground Zero of Organismal Life and Aging. Trends in Molecular Medicine, 2021, 27, 11-19.	3.5	42
86	Convergent evolution of marine mammals is associated with distinct substitutions in common genes. Scientific Reports, 2015, 5, 16550.	1.6	41
87	Utilization of selenocysteine in early-branching fungal phyla. Nature Microbiology, 2019, 4, 759-765.	5.9	41
88	N6-adenosine methylation of ribosomal RNA affects lipid oxidation and stress resistance. Science Advances, 2020, 6, eaaz4370.	4.7	41
89	Gene expression signatures of human cell and tissue longevity. Npj Aging and Mechanisms of Disease, 2016, 2, 16014.	4.5	40
90	Patterns of Aging Biomarkers, Mortality, and Damaging Mutations Illuminate the Beginning of Aging and Causes of Early-Life Mortality. Cell Reports, 2019, 29, 4276-4284.e3.	2.9	40

#	Article	IF	CITATIONS
91	<i>Lokiarchaeota</i> Marks the Transition between the Archaeal and Eukaryotic Selenocysteine Encoding Systems. Molecular Biology and Evolution, 2016, 33, 2441-2453.	3.5	39
92	Selenophosphate synthetase 1 is an essential protein with roles in regulation of redox homoeostasis in mammals. Biochemical Journal, 2016, 473, 2141-2154.	1.7	37
93	The 15kDa Selenoprotein and Thioredoxin Reductase 1 Promote Colon Cancer by Different Pathways. PLoS ONE, 2015, 10, e0124487.	1.1	37
94	Comparative transcriptomics across 14 <i>Drosophila</i> species reveals signatures of longevity. Aging Cell, 2018, 17, e12740.	3.0	35
95	Tolerance to Selenoprotein Loss Differs between Human and Mouse. Molecular Biology and Evolution, 2020, 37, 341-354.	3.5	34
96	Bioinformatics of Selenoproteins. Antioxidants and Redox Signaling, 2020, 33, 525-536.	2.5	34
97	svist4get: a simple visualization tool for genomic tracks from sequencing experiments. BMC Bioinformatics, 2019, 20, 113.	1.2	32
98	ARDD 2020: from aging mechanisms to interventions. Aging, 2020, 12, 24484-24503.	1.4	32
99	Historical Roles of Selenium and Selenoproteins in Health and Development: The Good, the Bad and the Ugly. International Journal of Molecular Sciences, 2022, 23, 5.	1.8	31
100	Naked Mole Rat Induced Pluripotent Stem Cells and Their Contribution to Interspecific Chimera. Stem Cell Reports, 2017, 9, 1706-1720.	2.3	30
101	Maintenance of genome sequence integrity in long- and short-lived rodent species. Science Advances, 2021, 7, eabj3284.	4.7	29
102	Deficiency of the 15-kDa selenoprotein led to cytoskeleton remodeling and non-apoptotic membrane blebbing through a RhoA/ROCK pathway. Biochemical and Biophysical Research Communications, 2015, 456, 884-890.	1.0	27
103	A Tale of Two Concepts: Harmonizing the Free Radical and Antagonistic Pleiotropy Theories of Aging. Antioxidants and Redox Signaling, 2018, 29, 1003-1017.	2.5	27
104	Reversibility of irreversible aging. Ageing Research Reviews, 2019, 49, 104-114.	5.0	27
105	Beaver and Naked Mole Rat Genomes Reveal Common Paths to Longevity. Cell Reports, 2020, 32, 107949.	2.9	26
106	Epigenetic aging of the demographically non-aging naked mole-rat. Nature Communications, 2022, 13, 355.	5.8	26
107	Comparison of the redox chemistry of sulfur- and selenium-containing analogs of uracil. Free Radical Biology and Medicine, 2017, 104, 249-261.	1.3	25

108 Aging and drug discovery. Aging, 2018, 10, 3079-3088.

1.4 25

#	Article	IF	CITATIONS
109	Selenium and Selenoprotein Deficiencies Induce Widespread Pyogranuloma Formation in Mice, while High Levels of Dietary Selenium Decrease Liver Tumor Size Driven by TGFα. PLoS ONE, 2013, 8, e57389.	1.1	23
110	Molecular Footprints of Aquatic Adaptation Including Bone Mass Changes in Cetaceans. Genome Biology and Evolution, 2018, 10, 967-975.	1.1	23
111	MICAL1 constrains cardiac stress responses and protects against disease by oxidizing CaMKII. Journal of Clinical Investigation, 2020, 130, 4663-4678.	3.9	23
112	Evolution of natural lifespan variation and molecular strategies of extended lifespan in yeast. ELife, 2021, 10, .	2.8	23
113	In vivo cyclic induction of the FOXM1 transcription factor delays natural and progeroid aging phenotypes and extends healthspan. Nature Aging, 2022, 2, 397-411.	5.3	23
114	Cell Proliferation and Motility Are Inhibited by G1 Phase Arrest in 15-kDa Selenoprotein-Deficient Chang Liver Cells. Molecules and Cells, 2015, 38, 457-465.	1.0	22
115	Emerging rejuvenation strategies—Reducing the biological age. Aging Cell, 2022, 21, e13538.	3.0	21
116	Adjustments, extinction, and remains of selenocysteine incorporation machinery in the nematode lineage. Rna, 2014, 20, 1023-1034.	1.6	20
117	Selenocysteine tRNA[Ser]Sec, the Central Component of Selenoprotein Biosynthesis: Isolation, Identification, Modification, and Sequencing. Methods in Molecular Biology, 2018, 1661, 43-60.	0.4	20
118	COVID-19 mortality rate in children is U-shaped. Aging, 2021, 13, 19954-19962.	1.4	20
119	Selenium utilization in thioredoxin and catalytic advantage provided by selenocysteine. Biochemical and Biophysical Research Communications, 2015, 461, 648-652.	1.0	19
120	Genetic and phenotypic analysis of the causal relationship between aging and COVID-19. Communications Medicine, 2021, 1, .	1.9	19
121	Defining molecular basis for longevity traits in natural yeast isolates. Npj Aging and Mechanisms of Disease, 2015, 1, .	4.5	18
122	The Enzymatic and Structural Basis for Inhibition of <i>Echinococcus granulosus</i> Thioredoxin Glutathione Reductase by Gold(I). Antioxidants and Redox Signaling, 2017, 27, 1491-1504.	2.5	17
123	Aminoglycoside-driven biosynthesis of selenium-deficient Selenoprotein P. Scientific Reports, 2017, 7, 4391.	1.6	17
124	Differences in Redox Regulatory Systems in Human Lung and Liver Tumors Suggest Different Avenues for Therapy. Cancers, 2015, 7, 2262-2276.	1.7	17
125	The First International Mini-Symposium on Methionine Restriction and Lifespan. Frontiers in Genetics, 2014, 5, 122.	1.1	16
126	Selenium and the 15kDa Selenoprotein Impact Colorectal Tumorigenesis by Modulating Intestinal Barrier Integrity. International Journal of Molecular Sciences, 2021, 22, 10651.	1.8	16

#	Article	IF	CITATIONS
127	Intrinsic Versus Extrinsic Cancer Risk Factors and Aging. Trends in Molecular Medicine, 2016, 22, 833-834.	3.5	15
128	Systematic ageâ€, organâ€, and dietâ€associated ionome remodeling and the development of ionomic aging clocks. Aging Cell, 2020, 19, e13119.	3.0	15
129	Mammalian Hbs1L deficiency causes congenital anomalies and developmental delay associated with Pelota depletion and 80S monosome accumulation. PLoS Genetics, 2019, 15, e1007917.	1.5	15
130	The Insertion Green Monster (iGM) Method for Expression of Multiple Exogenous Genes in Yeast. G3: Genes, Genomes, Genetics, 2014, 4, 1183-1191.	0.8	14
131	Selenoprotein MsrB1 deficiency exacerbates acetaminophen-induced hepatotoxicity via increased oxidative damage. Archives of Biochemistry and Biophysics, 2017, 634, 69-75.	1.4	13
132	Latest advances in aging research and drug discovery. Aging, 2019, 11, 9971-9981.	1.4	13
133	CTELS: A Cell-Free System for the Analysis of Translation Termination Rate. Biomolecules, 2020, 10, 911.	1.8	13
134	Naked mole rat TRF1 safeguards glycolytic capacity and telomere replication under low oxygen. Science Advances, 2021, 7, .	4.7	12
135	Ectopic cervical thymi and no thymic involution until midlife in naked mole rats. Aging Cell, 2021, 20, e13477.	3.0	12
136	Germline burden of rare damaging variants negatively affects human healthspan and lifespan. ELife, 2020, 9, .	2.8	12
137	Characterization of naked moleâ€rat hematopoiesis reveals unique stem and progenitor cell patterns and neotenic traits. EMBO Journal, 2022, 41, .	3.5	12
138	Age-associated molecular changes are deleterious and may modulate life span through diet. Science Advances, 2017, 3, e1601833.	4.7	11
139	Translation elongation factor 2 depletion by siRNA in mouse liver leads to mTOR-independent translational upregulation of ribosomal protein genes. Scientific Reports, 2020, 10, 15473.	1.6	10
140	Sensitivity of primary fibroblasts in culture to atmospheric oxygen does not correlate with species lifespan. Aging, 2016, 8, 841-847.	1.4	10
141	Pathogenic Variants in Selenoproteins and Selenocysteine Biosynthesis Machinery. International Journal of Molecular Sciences, 2021, 22, 11593.	1.8	10
142	A naked mole rat iPSC line expressing drug-inducible mouse pluripotency factors developed from embryonic fibroblasts. Stem Cell Research, 2018, 31, 197-200.	0.3	9
143	Identification of Signaling Pathways for Early Embryonic Lethality and Developmental Retardation in Sephs1â^'/â^' Mice. International Journal of Molecular Sciences, 2021, 22, 11647.	1.8	9
144	Methionine sulfoxide reductase B1 deficiency does not increase high-fat diet-induced insulin resistance in mice. Free Radical Research, 2017, 51, 24-37.	1.5	8

#	Article	IF	CITATIONS
145	Development of a novel fluorescent biosensor for dynamic monitoring of metabolic methionine redox status in cells and tissues. Biosensors and Bioelectronics, 2021, 178, 113031.	5.3	8
146	The naked mole rat genome: understanding aging through genome analysis. Aging, 2011, 3, 1124-1124.	1.4	8
147	An NMRâ€Based Biosensor to Measure Stereospecific Methionine Sulfoxide Reductase Activities in Vitro and in Vivo**. Chemistry - A European Journal, 2020, 26, 14838-14843.	1.7	7
148	A standard knockout procedure alters expression of adjacent loci at the translational level. Nucleic Acids Research, 2021, 49, 11134-11144.	6.5	7
149	Genomic expansion of Aldh1a1 protects beavers against high metabolic aldehydes from lipid oxidation. Cell Reports, 2021, 37, 109965.	2.9	7
150	Selenium and Methionine Sulfoxide Reduction. Free Radical Biology and Medicine, 2014, 75, S8-S9.	1.3	6
151	Monitoring of Methionine Sulfoxide Content and Methionine Sulfoxide Reductase Activity. Methods in Molecular Biology, 2018, 1661, 285-299.	0.4	5
152	How can aging be reversed? Exploring rejuvenation from a damageâ€based perspective. Genetics & Genomics Next, 2020, 1, e10025.	0.8	5
153	Meeting Report: Aging Research and Drug Discovery. Aging, 2022, 14, 530-543.	1.4	4
154	Sep15 knockout in mice provides protection against chemicallyâ€induced aberrant crypt formation. FASEB Journal, 2011, 25, 110.1.	0.2	3
155	Biosensor-Linked Immunosorbent Assay for the Quantification of Methionine Oxidation in Target Proteins. ACS Sensors, 2022, 7, 131-141.	4.0	3
156	Profiling Epigenetic Age in Single Cells. Innovation in Aging, 2021, 5, 673-673.	0.0	3
157	Measuring Organ-Specific Translation Elongation Rate in Mice. Methods in Molecular Biology, 2021, 2252, 189-200.	0.4	1
158	Chronic Exposure to Youthful Circulation Leads to Epigenetic Reprogramming and Lifespan Extension. Innovation in Aging, 2021, 5, 677-678.	0.0	1
159	James R. Mitchell (1971–2020). Cell Metabolism, 2021, 33, 458-461.	7.2	Ο
160	Role of the 15kDa selenoprotein (Sep15) in colon cancer prevention. FASEB Journal, 2010, 24, 218.5.	0.2	0
161	Increased sodium selenite cytotoxicity in thioredoxin reductase 1 knockdown cancer cells. FASEB Journal, 2011, 25, 110.6.	0.2	0
162	SECIS―and UGA positionâ€dependent incorporation of selenocysteine into mammalian selenoproteins. FASEB Journal, 2012, 26, 1013.31.	0.2	0

#	Article	IF	CITATIONS
163	Aging Predisposes B cells to Malignancy by Activating c-Myc and Perturbing the Genome and Epigenome. Innovation in Aging, 2021, 5, 560-561.	0.0	0
164	Genetic and Phenotypic Evidence for the Causal Relationship Between Aging and COVID-19. Innovation in Aging, 2021, 5, 330-330.	0.0	0