Tae Sub Park

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2572956/publications.pdf Version: 2024-02-01

TAE SUB DADK

#	Article	IF	CITATIONS
1	Comparison of meat quality characteristics and proteolysis trends associated with muscle fiber type distribution between duck pectoralis major and iliotibialis muscles. Food Science of Animal Resources, 2022, 42, 266-279.	4.1	6
2	Prokineticin receptor 1 ameliorates insulin resistance in skeletal muscle. FASEB Journal, 2021, 35, e21179.	0.5	6
3	Cellhesion VP enhances the immunomodulating potential of human mesenchymal stem cell-derived extracellular vesicles. Biomaterials, 2021, 271, 120742.	11.4	14
4	piggyBac Transposition and the Expression of Human Cystatin C in Transgenic Chickens. Animals, 2021, 11, 1554.	2.3	2
5	Regulation of toll-like receptors expression in muscle cells by exercise-induced stress. Animal Bioscience, 2021, 34, 1590-1599.	2.0	7
6	Muscle differentiation induced by p53 signaling pathway-related genes in myostatin-knockout quail myoblasts. Molecular Biology Reports, 2020, 47, 9531-9540.	2.3	6
7	Functional analyses of miRNA-146b-5p during myogenic proliferation and differentiation in chicken myoblasts. BMC Molecular and Cell Biology, 2020, 21, 40.	2.0	12
8	Generation of myostatinâ€knockout chickens mediated by D10A as9 nickase. FASEB Journal, 2020, 34, 5688-5696.	0.5	56
9	Disruption of G ₀ /G ₁ switch gene 2 (<i>GOS2</i>) reduced abdominal fat deposition and altered fatty acid composition in chicken. FASEB Journal, 2019, 33, 1188-1198.	0.5	30
10	Functional efficacy analysis of Angelica gigas Nakai on chicken myoblast cells through cellâ€based in vitro assay. Animal Science Journal, 2019, 90, 903-912.	1.4	0
11	Connectivity mapping of angiotensin-PPAR interactions involved in the amelioration of non-alcoholic steatohepatitis by Telmisartan. Scientific Reports, 2019, 9, 4003.	3.3	16
12	Effects of Angelica gigas Nakai on the production of decursin―and decursinol angelateâ€enriched eggs. Journal of the Science of Food and Agriculture, 2019, 99, 3117-3123.	3.5	3
13	Effects of exercise on myokine gene expression in horse skeletal muscles. Asian-Australasian Journal of Animal Sciences, 2019, 32, 350-356.	2.4	11
14	The effect of heat stress on frame switch splicing of X-box binding protein 1 gene in horse. Asian-Australasian Journal of Animal Sciences, 2019, 32, 1095-1103.	2.4	6
15	Muscle differentiation induced up-regulation of calcium-related gene expression in quail myoblasts. Asian-Australasian Journal of Animal Sciences, 2018, 31, 1507-1515.	2.4	18
16	Myotube differentiation in clustered regularly interspaced short palindromic repeat/Cas9-mediated MyoD knockout quail myoblast cells. Asian-Australasian Journal of Animal Sciences, 2017, 30, 1029-1036.	2.4	11
17	Functional analysis of SH3 domain containing ring finger 2 during the myogenic differentiation of quail myoblast cells. Asian-Australasian Journal of Animal Sciences, 2017, 30, 1183-1189.	2.4	9
18	Myostatin gene knockout mediated by Cas9-D10A nickase in chicken DF1 cells without off-target effect. Asian-Australasian Journal of Animal Sciences, 2017, 30, 743-748.	2.4	14

TAE SUB PARK

#	Article	IF	CITATIONS
19	Efficient transgene expression system using a cumate-inducible promoter and Cre-loxP recombination in avian cells. Asian-Australasian Journal of Animal Sciences, 2017, 30, 886-892.	2.4	3
20	Molecular analysis of alternative transcripts of equine AXL receptor tyrosine kinase gene. Asian-Australasian Journal of Animal Sciences, 2017, 30, 1471-1477.	2.4	5
21	Siteâ€specific recombination in the chicken genome using Flipase recombinaseâ€mediated cassette exchange. FASEB Journal, 2016, 30, 555-563.	0.5	24
22	Comprehensive Identification of Sexual Dimorphism-Associated Differentially Expressed Genes in Two-Way Factorial Designed RNA-Seq Data on Japanese Quail (Coturnix coturnix japonica). PLoS ONE, 2015, 10, e0139324.	2.5	11
23	Spatial and temporal action of chicken primordial germ cells during initial migration. Reproduction, 2015, 149, 179-187.	2.6	36
24	Deposition of bioactive human epidermal growth factor in the egg white of transgenic hens using an oviductâ€specific minisynthetic promoter. FASEB Journal, 2015, 29, 2386-2396.	0.5	47
25	Targeted gene knockout in chickens mediated by TALENs. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 12716-12721.	7.1	135
26	The CCAAT element in the <i>CIWI</i> promoter regulates transcriptional initiation in chicken primordial germ cells. Molecular Reproduction and Development, 2014, 81, 871-882.	2.0	4
27	Cellular Dynamics after Injection of Mesoderm-Derived Human Embryonic Kidney 293 Cells and Fibroblasts into Developing Chick Embryos. Journal of Cancer Prevention, 2014, 19, 68-73.	2.0	0
28	Current genomic editing approaches in avian transgenesis. General and Comparative Endocrinology, 2013, 190, 144-148.	1.8	11
29	Conservation of Migration and Differentiation Circuits in Primordial Germ Cells Between Avian Species. Journal of Reproduction and Development, 2013, 59, 252-257.	1.4	9
30	<i>piggyBac</i> transposition into primordial germ cells is an efficient tool for transgenesis in chickens. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 9337-9341.	7.1	154
31	Genetic modification of chicken germ cells. Annals of the New York Academy of Sciences, 2012, 1271, 104-109.	3.8	11
32	Avian Biotechnology: Insights from Germ Cell-mediated Transgenic Systems. Journal of Poultry Science, 2010, 47, 197-207.	1.6	7
33	Production of quail (<i>Coturnix japonica</i>) germline chimeras derived from in vitroâ€cultured gonadal primordial germ cells. Molecular Reproduction and Development, 2008, 75, 274-281.	2.0	28
34	Birth of germline chimeras by transfer of chicken embryonic germ (EG) cells into recipient embryos. Molecular Reproduction and Development, 2003, 65, 389-395.	2.0	66
35	Improved Germline Transmission in Chicken Chimeras Produced by Transplantation of Gonadal Primordial Germ Cells into Recipient Embryos1. Biology of Reproduction, 2003, 68, 1657-1662.	2.7	90
36	Derivation and characterization of pluripotent embryonic germ cells in chicken. Molecular Reproduction and Development, 2000, 56, 475-482.	2.0	126

#	Article	IF	CITATIONS
37	Derivation and characterization of pluripotent embryonic germ cells in chicken. Molecular Reproduction and Development, 2000, 56, 475-482.	2.0	6
38	PRODUCTION OF GERMLINE CHIMERIC CHICKENS BY TRANSFER OF CULTURED PRIMORDIAL GERM CELLS. Cell Biology International, 1997, 21, 495-499.	3.0	91