VÃ-tor M. Gaspar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2572827/publications.pdf

Version: 2024-02-01

	159585	155660
3,268	30	55
citations	h-index	g-index
69	69	4755
docs citations	times ranked	citing authors
	citations 69	3,268 30 citations h-index 69 69

#	Article	IF	Citations
1	3D tumor spheroids: an overview on the tools and techniques used for their analysis. Biotechnology Advances, 2016, 34, 1427-1441.	11.7	579
2	Stimuliâ€Responsive Nanocomposite Hydrogels for Biomedical Applications. Advanced Functional Materials, 2021, 31, 2005941.	14.9	234
3	Design of spherically structured 3D in vitro tumor models -Advances and prospects. Acta Biomaterialia, 2018, 75, 11-34.	8.3	155
4	Chitosan/arginine–chitosan polymer blends for assembly of nanofibrous membranes for wound regeneration. Carbohydrate Polymers, 2015, 130, 104-112.	10.2	131
5	Advanced Bottomâ€Up Engineering of Living Architectures. Advanced Materials, 2020, 32, e1903975.	21.0	127
6	Optimization of liquid overlay technique to formulate heterogenic 3D coâ€cultures models. Biotechnology and Bioengineering, 2014, 111, 1672-1685.	3.3	113
7	Stimuli-responsive nanocarriers for delivery of bone therapeutics – Barriers and progresses. Journal of Controlled Release, 2018, 273, 51-67.	9.9	84
8	Decellularized Extracellular Matrix for Bioengineering Physiomimetic 3D in Vitro Tumor Models. Trends in Biotechnology, 2020, 38, 1397-1414.	9.3	84
9	Poly(2-ethyl-2-oxazoline)–PLA-g–PEI amphiphilic triblock micelles for co-delivery of minicircle DNA and chemotherapeutics. Journal of Controlled Release, 2014, 189, 90-104.	9.9	75
10	Bioreducible poly(2-ethyl-2-oxazoline)–PLA–PEI-SS triblock copolymer micelles for co-delivery of DNA minicircles and Doxorubicin. Journal of Controlled Release, 2015, 213, 175-191.	9.9	75
11	Minicircle DNA vectors for gene therapy: advances and applications. Expert Opinion on Biological Therapy, 2015, 15, 353-379.	3.1	73
12	In-air production of 3D co-culture tumor spheroid hydrogels for expedited drug screening. Acta Biomaterialia, 2019, 94, 392-409.	8.3	72
13	Hydrogel 3D <i>in vitro</i> tumor models for screening cell aggregation mediated drug response. Biomaterials Science, 2020, 8, 1855-1864.	5.4	70
14	Bioactive polymeric–ceramic hybrid 3D scaffold for application in bone tissue regeneration. Materials Science and Engineering C, 2013, 33, 4460-4469.	7.3	64
15	Nanoparticle mediated delivery of pure P53 supercoiled plasmid DNA for gene therapy. Journal of Controlled Release, 2011, 156, 212-222.	9.9	63
16	Preparation of end-capped pH-sensitive mesoporous silica nanocarriers for on-demand drug delivery. European Journal of Pharmaceutics and Biopharmaceutics, 2014, 88, 1012-1025.	4.3	61
17	Bioinstructive microparticles for self-assembly of mesenchymal stem Cell-3D tumor spheroids. Biomaterials, 2018, 185, 155-173.	11.4	58
18	Manufacture of \hat{l}^2 -TCP/alginate scaffolds through a Fab@home model for application in bone tissue engineering. Biofabrication, 2014, 6, 025001.	7.1	54

#	Article	IF	Citations
19	Combinatorial delivery of Crizotinib–Palbociclib–Sildenafil using TPGS-PLA micelles for improved cancer treatment. European Journal of Pharmaceutics and Biopharmaceutics, 2014, 88, 718-729.	4.3	53
20	Microencapsulated chitosan–dextran sulfate nanoparticles for controled delivery of bioactive molecules and cells in bone regeneration. Polymer, 2013, 54, 5-15.	3.8	52
21	Bioinspired bone therapies using naringin: applications and advances. Drug Discovery Today, 2018, 23, 1293-1304.	6.4	49
22	Freeform 3D printing using a continuous viscoelastic supporting matrix. Biofabrication, 2020, 12, 035017.	7.1	49
23	Folate-Targeted Multifunctional Amino Acid-Chitosan Nanoparticles for Improved Cancer Therapy. Pharmaceutical Research, 2015, 32, 562-577.	3.5	48
24	GelMA/bioactive silica nanocomposite bioinks for stem cell osteogenic differentiation. Biofabrication, 2021, 13, 035012.	7.1	48
25	Evaluation of Nanoparticle Uptake in Co-culture Cancer Models. PLoS ONE, 2013, 8, e70072.	2.5	48
26	Oxygen releasing materials: Towards addressing the hypoxia-related issues in tissue engineering. Materials Science and Engineering C, 2021, 122, 111896.	7.3	46
27	Proteinaceous Hydrogels for Bioengineering Advanced 3D Tumor Models. Advanced Science, 2021, 8, 2003129.	11.2	41
28	Gas-generating TPGS-PLGA microspheres loaded with nanoparticles (NIMPS) for co-delivery of minicircle DNA and anti-tumoral drugs. Colloids and Surfaces B: Biointerfaces, 2015, 134, 287-294.	5.0	39
29	Flavonoid-mediated immunomodulation of human macrophages involves key metabolites and metabolic pathways. Scientific Reports, 2019, 9, 14906.	3.3	36
30	3D-bioprinted cancer-on-a-chip: level-up organotypic in vitro models. Trends in Biotechnology, 2022, 40, 432-447.	9.3	36
31	Co-delivery of Sildenafil (Viagra \hat{A}^{\otimes}) and Crizotinib for Synergistic and Improved Anti-tumoral Therapy. Pharmaceutical Research, 2014, 31, 2516-2528.	3.5	33
32	Double network laminarin-boronic/alginate dynamic bioink for 3D bioprinting cell-laden constructs. Biofabrication, 2021, 13, 035045.	7.1	33
33	Preparation of Well-Dispersed Chitosan/Alginate Hollow Multilayered Microcapsules for Enhanced Cellular Internalization. Molecules, 2018, 23, 625.	3.8	31
34	Responsive laminarin-boronic acid self-healing hydrogels for biomedical applications. Polymer Journal, 2020, 52, 997-1006.	2.7	31
35	Synthesis and characterization of micelles as carriers of non-steroidal anti-inflammatory drugs (NSAID) for application in breast cancer therapy. Colloids and Surfaces B: Biointerfaces, 2014, 113, 375-383.	5.0	29
36	Mechanochemical Patternable ECMâ€Mimetic Hydrogels for Programmed Cell Orientation. Advanced Healthcare Materials, 2020, 9, e1901860.	7.6	29

#	Article	IF	Citations
37	Natural Origin Biomaterials for 4D Bioprinting Tissueâ€Like Constructs. Advanced Materials Technologies, 2021, 6, 2100168.	5.8	27
38	Improved Minicircle DNA Biosynthesis for Gene Therapy Applications. Human Gene Therapy Methods, 2014, 25, 93-105.	2.1	25
39	Organotypic 3D decellularized matrix tumor spheroids for high-throughput drug screening. Biomaterials, 2021, 275, 120983.	11.4	25
40	Gelatin Methacryloyl (GelMA) Nanocomposite Hydrogels Embedding Bioactive Naringin Liposomes. Polymers, 2020, 12, 2944.	4.5	23
41	Brewer's yeast polysaccharides — A review of their exquisite structural features and biomedical applications. Carbohydrate Polymers, 2022, 277, 118826.	10.2	23
42	Advancing Tissue Decellularized Hydrogels for Engineering Human Organoids. Advanced Functional Materials, 2022, 32, .	14.9	21
43	Repurposing Old Drugs into New Epigenetic Inhibitors: Promising Candidates for Cancer Treatment?. Pharmaceutics, 2020, 12, 410.	4.5	20
44	Bioinstructive Naringinâ€Loaded Micelles for Guiding Stem Cell Osteodifferentiation. Advanced Healthcare Materials, 2018, 7, e1800890.	7.6	19
45	Screening of dual chemo-photothermal cellular nanotherapies in organotypic breast cancer 3D spheroids. Journal of Controlled Release, 2021, 331, 85-102.	9.9	19
46	Self-Assembled Bioactive Colloidal Gels as Injectable Multiparticle Shedding Platforms. ACS Applied Materials & Samp; Interfaces, 2020, 12, 31282-31291.	8.0	15
47	Stratified 3D Microtumors as Organotypic Testing Platforms for Screening Pancreatic Cancer Therapies. Small Methods, 2021, 5, e2001207.	8.6	15
48	Partial Coated Stem Cells with Bioinspired Silica as New Generation of Cellular Hybrid Materials. Advanced Functional Materials, 2021, 31, 2009619.	14.9	14
49	Sensitive Detection of Peptide–Minicircle DNA Interactions by Surface Plasmon Resonance. Analytical Chemistry, 2013, 85, 2304-2311.	6.5	11
50	Mesenchymal Stem Cells Relevance in Multicellular Bioengineered 3D In Vitro Tumor Models. Biotechnology Journal, 2017, 12, 1700079.	3.5	10
51	Coordination Compounds As Multi-Delivery Systems for Osteoporosis. ACS Applied Materials & amp; Interfaces, 2021, 13, 35469-35483.	8.0	10
52	Temperature-responsive nanomagnetic logic gates for cellular hyperthermia. Materials Horizons, 2019, 6, 524-530.	12.2	9
53	Programmable Living Units for Emulating Pancreatic Tumorâ€Stroma Interplay. Advanced Healthcare Materials, 2022, 11, e2102574.	7.6	9
54	G9a inhibition by CM-272: Developing a novel anti-tumoral strategy for castration-resistant prostate cancer using 2D and 3D in vitro models. Biomedicine and Pharmacotherapy, 2022, 150, 113031.	5.6	9

#	Article	IF	Citations
55	The biological performance of purified supercoiled p53 plasmid DNA in different cancer cell lines. Process Biochemistry, 2018, 75, 240-249.	3.7	8
56	Engineering mammalian living materials towards clinically relevant therapeutics. EBioMedicine, 2021, 74, 103717.	6.1	8
57	Differential Modulation of the Phospholipidome of Proinflammatory Human Macrophages by the Flavonoids Quercetin, Naringin and Naringenin. Molecules, 2020, 25, 3460.	3.8	7
58	Efficient Singleâ€Dose Induction of Osteogenic Differentiation of Stem Cells Using Multiâ€Bioactive Hybrid Nanocarriers. Advanced Biology, 2020, 4, e2000123.	3.0	7
59	Advances in bioengineering pancreatic tumor-stroma physiomimetic Biomodels. Biomaterials, 2022, 287, 121653.	11.4	7
60	Macrophage-targeted shikonin-loaded nanogels for modulation of inflammasome activation. Nanomedicine: Nanotechnology, Biology, and Medicine, 2022, 42, 102548.	3.3	6
61	Multifunctional nanocarriers for codelivery of nucleic acids and chemotherapeutics to cancer cells. , 2016, , 163-207.		5
62	Bone Tissue Disorders: Healing Through Coordination Chemistry. Chemistry - A European Journal, 2020, 26, 15416-15437.	3.3	5
63	Highly selective capture of minicircle DNA biopharmaceuticals by a novel zinc-histidine peptide conjugate. Separation and Purification Technology, 2017, 174, 417-424.	7.9	4
64	Bioinspired biomaterials to develop cell-rich spherical microtissues for 3D in vitro tumor modeling. , 2020, , 43-65.		3
65	Cellâ€Based Therapy: Partial Coated Stem Cells with Bioinspired Silica as New Generation of Cellular Hybrid Materials (Adv. Funct. Mater. 29/2021). Advanced Functional Materials, 2021, 31, 2170211.	14.9	1
66	Frontispiece: Bone Tissue Disorders: Healing Through Coordination Chemistry. Chemistry - A European Journal, 2020, 26, .	3.3	0
67	Consistent Inclusion of Mesenchymal Stem Cells into In Vitro Tumor Models. Methods in Molecular Biology, 2021, 2269, 3-23.	0.9	0
68	Bioimaging of Mesenchymal Stem Cells Spatial Distribution and Interactions with 3D In Vitro Tumor Spheroids. Methods in Molecular Biology, 2021, 2269, 49-61.	0.9	0