List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2572778/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Innovative fouling-resistant materials for industrial heat exchangers: a review. Reviews in Chemical Engineering, 2023, 39, 71-104.	4.4	4
2	Fire Testing of Intumescent Coatings: Comparison Between Bench-Scale Furnace and Radiant Panels Experimental Methodologies. Fire Technology, 2022, 58, 1737-1766.	3.0	4
3	Transparent fire protective sol-gel coating for wood panels. Polymer Testing, 2022, 110, 107579.	4.8	4
4	Self-stratified bio-based coatings: Formulation and elucidation of critical parameters governing stratification. Applied Surface Science, 2021, 536, 147687.	6.1	17
5	Intumescent polypropylene: Interactions between physical and chemical expansion. Fire and Materials, 2021, 45, 387-395.	2.0	7
6	PCL covered PP meshes plasma-grafted by sulfonated monomer for the prevention of postoperative abdominal adhesions. Materials Today Communications, 2021, 26, 101968.	1.9	4
7	Thin coatings for fire protection: An overview of the existing strategies, with an emphasis on layer-by-layer surface treatments and promising new solutions. Progress in Organic Coatings, 2021, 154, 106217.	3.9	29
8	A critical review on surface modifications mitigating dairy fouling. Comprehensive Reviews in Food Science and Food Safety, 2021, 20, 4324-4366.	11.7	9
9	Calcium Chelation by Phosphate Ions and Its Influence on Fouling Mechanisms of Whey Protein Solutions in a Plate Heat Exchanger. Foods, 2021, 10, 259.	4.3	8
10	Flame Retardancy of Lightweight Sandwich Composites. Journal of Composites Science, 2021, 5, 274.	3.0	4
11	An efficient bi-layer intumescent paint metal laminate fire barrier for various substrates: Extension to other application. European Journal of Materials, 2021, 1, 19-33.	2.6	0
12	A new approach to design self stratifying coatings containing nano and micro pigments. Journal of Dispersion Science and Technology, 2020, 41, 902-908.	2.4	6
13	Life cycle assessment of multi-step versus one-step coating processes using oil or bio-based resins. Journal of Cleaner Production, 2020, 242, 118527.	9.3	3
14	Latest trends for structural steel protection by using intumescent fire protective coatings: a review. Surface Engineering, 2020, 36, 334-363.	2.2	36
15	3D printed sandwich materials filled with hydrogels for extremely low heat release rate. Polymer Degradation and Stability, 2020, 179, 109269.	5.8	14
16	Effect of Cold Plasma Treatment on Electrospun Nanofibers Properties: A Review. ACS Applied Bio Materials, 2020, 3, 4696-4716.	4.6	37
17	Combining Low-Emissivity Thin Coating and 3D-Printed Original Designs for Superior Fire-Protective Performance. ACS Omega, 2020, 5, 27857-27863.	3.5	5
18	Low-Emissivity Metal/Dielectric Coatings as Radiative Barriers for the Fire Protection of Raw and Formulated Polymers. ACS Applied Polymer Materials, 2020, 2, 2880-2889.	4.4	8

#	Article	IF	CITATIONS
19	Formulation of eco-friendly sol–gel coatings to flame-retard flexible polyurethane foam. Green Materials, 2020, 8, 139-149.	2.1	5
20	Effect of the phosphate/calcium molar ratio on fouling deposits generated by the processing of a whey protein isolate in a plate heat exchanger. Food and Bioproducts Processing, 2020, 121, 154-165.	3.6	8
21	Bilayer Intumescent Paint Metal Laminates: A Novel Design for a High-Performance Fire Barrier. Industrial & Engineering Chemistry Research, 2020, 59, 2988-2997.	3.7	5
22	Hexagonal Boron Nitride Platelet-Based Nanocoating for Fire Protection. ACS Applied Nano Materials, 2019, 2, 5450-5459.	5.0	30
23	Innovative 3D printed design to conceive highly fire-retardant multi-material. Polymer Degradation and Stability, 2019, 169, 108992.	5.8	13
24	Flame retardant and weathering resistant self-layering epoxy-silicone coatings for plastics. Progress in Organic Coatings, 2019, 136, 105269.	3.9	20
25	Pyrolysis modeling, sensitivity analysis, and optimization techniques for combustible materials: A review. Journal of Fire Sciences, 2019, 37, 377-433.	2.0	30
26	Synergistic effect of basalt fiber on the thermal properties of intumescent fire retardant coating. Materials Today: Proceedings, 2019, 16, 2030-2038.	1.8	6
27	Intumescent ethylene-vinyl acetate copolymer: Reaction to fire and mechanistic aspects. Polymer Degradation and Stability, 2019, 161, 235-244.	5.8	35
28	Additive manufacturing of fireâ€retardant ethyleneâ€vinyl acetate. Polymers for Advanced Technologies, 2019, 30, 1878-1890.	3.2	17
29	Investigating the Effect of an Antifouling Surface Modification on the Environmental Impact of a Pasteurization Process: An LCA Study. ACS Sustainable Chemistry and Engineering, 2019, 7, 9133-9142.	6.7	15
30	Intumescent polypropylene: Reaction to fire and mechanistic aspects. Fire Safety Journal, 2019, 105, 261-269.	3.1	23
31	A Facile Technique to Extract the Cross-Sectional Structure of Brittle Porous Chars from Intumescent Coatings. Polymers, 2019, 11, 640.	4.5	7
32	Quantifying the effects of basalt fibers on thermal degradation and fire performance of epoxy-based intumescent coating for fire protection of steel substrate. Progress in Organic Coatings, 2019, 132, 148-158.	3.9	30
33	Fractal conceptualization of intumescent fire barriers, toward simulations of virtual morphologies. Scientific Reports, 2019, 9, 1872.	3.3	16
34	Biomimetic surface modifications of stainless steel targeting dairy fouling mitigation and bacterial adhesion. Food and Bioproducts Processing, 2019, 113, 32-38.	3.6	28
35	Getting a better insight into the chemistry of decomposition of complex flame retarded formulation: New insights using solid state NMR. Polymer Degradation and Stability, 2018, 153, 145-154.	5.8	17
36	Influence of stainless steel surface properties on whey protein fouling under industrial processing conditions. Journal of Food Engineering, 2018, 228, 38-49.	5.2	25

MAUDE JIMENEZ

#	Article	IF	CITATIONS
37	Fire retardant sol-gel coated polyurethane foam: Mechanism of action. Polymer Degradation and Stability, 2018, 147, 159-167.	5.8	35
38	Effect of the calcium/protein molar ratio on β-lactoglobulin denaturation kinetics and fouling phenomena. International Dairy Journal, 2018, 78, 1-10.	3.0	27
39	Modeling heat transfers across a silicone-based intumescent coating. Journal of Physics: Conference Series, 2018, 1107, 032012.	0.4	6
40	Maze running into intumescence: mechanistic aspects in polypropylene. Journal of Physics: Conference Series, 2018, 1107, 032001.	0.4	0
41	Self-Stratification of Ternary Systems Including a Flame Retardant Liquid Additive. Coatings, 2018, 8, 448.	2.6	8
42	Antifouling amphiphilic silicone coatings for dairy fouling mitigation on stainless steel. Biofouling, 2018, 34, 769-783.	2.2	14
43	Intumescent Polymer Metal Laminates for Fire Protection. Polymers, 2018, 10, 995.	4.5	14
44	Extreme Heat Shielding of Clay/Chitosan Nanobrick Wall on Flexible Foam. ACS Applied Materials & Interfaces, 2018, 10, 31686-31696.	8.0	81
45	Graphite-based composites for whey protein fouling and bacterial adhesion management. International Dairy Journal, 2018, 86, 69-75.	3.0	3
46	Characterization of in-flame soot from balsa composite combustion during mass loss cone calorimeter tests. Polymer Degradation and Stability, 2018, 154, 304-311.	5.8	4
47	Atmospheric pressure plasma spraying of silane-based coatings targeting whey protein fouling and bacterial adhesion management. Applied Surface Science, 2018, 455, 392-402.	6.1	24
48	Effect of basalt fibers dispersion on steel fire protection performance of epoxy-based intumescent coatings. Progress in Organic Coatings, 2018, 122, 229-238.	3.9	44
49	Recent advances on the ageing of flame retarded PLA: Effect of UV-light and/or relative humidity. Polymer Degradation and Stability, 2017, 139, 143-164.	5.8	28
50	Self-stratifying coatings: A review. Progress in Organic Coatings, 2017, 110, 210-241.	3.9	53
51	One pot flame retardant and weathering resistant coatings for plastics: a novel approach. RSC Advances, 2017, 7, 40682-40694.	3.6	10
52	Antifouling Biomimetic Liquid-Infused Stainless Steel: Application to Dairy Industrial Processing. ACS Applied Materials & Interfaces, 2017, 9, 26565-26573.	8.0	68
53	Self-stratifying epoxy/silicone coatings. Progress in Organic Coatings, 2017, 103, 101-110.	3.9	26
54	Microintumescent mechanism of flameâ€retardant waterâ€based chitosan–ammonium polyphosphate multilayer nanocoating on cotton fabric. Journal of Applied Polymer Science, 2016, 133, .	2.6	51

#	Article	IF	CITATIONS
55	Topcoats versus Durability of an Intumescent Coating. Industrial & Engineering Chemistry Research, 2016, 55, 9625-9632.	3.7	20
56	Revealing the impact of ageing on a flame retarded PLA. Polymer Degradation and Stability, 2016, 127, 88-97.	5.8	28
57	Fire retardant sol–gel coatings for flexible polyurethane foams. RSC Advances, 2016, 6, 28543-28554.	3.6	19
58	Tyrosine: an efficient natural molecule for copper remediation. Green Materials, 2015, 3, 1-9.	2.1	8
59	The electron microanalyzer (EPMA): a powerful device for the microanalysis of filled polymeric materials. Polymers for Advanced Technologies, 2015, 26, 1020-1026.	3.2	2
60	An innovative method to functionalize textiles for the remediation of polluted media. Applied Surface Science, 2015, 330, 111-117.	6.1	4
61	Layer-by-layer deposition of a TiO2-filled intumescent coating and its effect on the flame retardancy of polyamide and polyester fabrics. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 469, 1-10.	4.7	50
62	Novel flame retardant flexible polyurethane foam: plasma induced graft-polymerization of phosphonates. RSC Advances, 2015, 5, 63853-63865.	3.6	42
63	Characterization of a plasma polymer coating from an organophosphorus silane deposited at at atmospheric pressure for fire-retardant purposes. Progress in Organic Coatings, 2015, 88, 39-47.	3.9	24
64	High speed atmospheric plasma deposition of transparent ZnO thin films without post-deposition annealing. Thin Solid Films, 2015, 589, 161-164.	1.8	4
65	Ultrasonic Adhesion Measurement of Whey Protein Fouling. Heat Transfer Engineering, 2015, 36, 771-779.	1.9	9
66	Remediation of Heavy Metals by Biomolecules: A Review. Critical Reviews in Environmental Science and Technology, 2015, 45, 1644-1704.	12.8	85
67	Development anti-dairy fouling surface of 316L 2B stainless steel by atmospheric pressure plasma treatment. , 2014, , .		1
68	Pregnancy outcomes of prenatally diagnosed Turner syndrome: a French multicenter retrospective study including a series of 975 cases. Prenatal Diagnosis, 2014, 34, 1133-1138.	2.3	20
69	Simultaneous immobilization of heparin and gentamicin on polypropylene textiles: A dual therapeutic activity. Journal of Biomedical Materials Research - Part A, 2014, 102, 3846-3854.	4.0	10
70	Cysteine-grafted nonwoven geotextile: A new and efficient material for heavy metals sorption – Part A. Journal of Environmental Management, 2014, 132, 107-112.	7.8	18
71	Mechanistic investigation of a flame retardant coating made by layer-by-layer assembly. RSC Advances, 2014, 4, 43326-43334.	3.6	22
72	Deterministic lateral displacement for particle separation: a review. Lab on A Chip, 2014, 14, 4139-4158.	6.0	341

#	Article	IF	CITATIONS
73	Intumescent coating of (polyallylamine-polyphosphates) deposited on polyamide fabrics via layer-by-layer technique. Polymer Degradation and Stability, 2014, 106, 158-164.	5.8	56
74	Influence of processing gases on the properties of cold atmospheric plasma SiO x C y coatings. Applied Surface Science, 2014, 315, 531-537.	6.1	11
75	Aging of the flameâ€retardant properties of polycarbonate and polypropylene protected by an intumescent coating. Journal of Applied Polymer Science, 2014, 131, .	2.6	20
76	Cysteine-grafted nonwoven geotextile: A new and efficient material for heavy metals sorption – Part B. Journal of Environmental Management, 2014, 143, 99-105.	7.8	16
77	Polyallylamine–montmorillonite as super flame retardant coating assemblies byÂlayer-by layer deposition on polyamide. Polymer Degradation and Stability, 2013, 98, 627-634.	5.8	118
78	Toward the understanding of the interfacial dairy fouling deposition and growth mechanisms at a stainless steel surface: A multiscale approach. Journal of Colloid and Interface Science, 2013, 404, 192-200.	9.4	48
79	Chitosan-grafted nonwoven geotextile for heavy metals sorption in sediments. Reactive and Functional Polymers, 2013, 73, 53-59.	4.1	39
80	Comprehensive Study of the Influence of Different Aging Scenarios on the Fire Protective Behavior of an Epoxy Based Intumescent Coating. Industrial & Engineering Chemistry Research, 2013, 52, 729-743.	3.7	62
81	Enhanced fire retardant properties of glass-fiber reinforced Polyamide 6,6 by combining bulk and surface treatments: Toward a better understanding of the fire-retardant mechanism. Polymer Degradation and Stability, 2013, 98, 1378-1388.	5.8	18
82	Intumescence as method for providing fire resistance to structural composites: application to poly(ethylene terephtalate) foam sandwich–structured composite. Composite Interfaces, 2013, 20, 269-277.	2.3	15
83	Sorption of heavy metals on a chitosan-grafted-polypropylene nonwoven geotextile. E3S Web of Conferences, 2013, 1, 05003.	0.5	1
84	Simultaneous antibacterial and anticoagulant properties of polypropylene non-woven textiles. MATEC Web of Conferences, 2013, 7, 04014.	0.2	0
85	Anticoagulant and antimicrobial finishing of non-woven polypropylene textiles. Biomedical Materials (Bristol), 2012, 7, 035001.	3.3	30
86	New routes to flame retard polyamide 6,6 for electrical applications. Journal of Fire Sciences, 2012, 30, 535-551.	2.0	27
87	Fire protection of polypropylene and polycarbonate by intumescent coatings. Polymers for Advanced Technologies, 2012, 23, 130-135.	3.2	26
88	Functionalization of Titanium Surfaces with Polymer Brushes Prepared from a Biomimetic RAFT Agent. Macromolecules, 2011, 44, 5883-5892.	4.8	69
89	Selective biological response of human pulmonary microvascular endothelial cells and human pulmonary artery smooth muscle cells on cold-plasma-modified polyester vascular prostheses. Biomedical Materials (Bristol), 2011, 6, 065003.	3.3	12
90	Improvement of heat resistance of high performance fibers using a cold plasma polymerization process. Surface and Coatings Technology, 2010, 205, 745-758.	4.8	17

#	Article	IF	CITATIONS
91	A "Clickable―Titanium Surface Platform. Langmuir, 2010, 26, 15920-15924.	3.5	47
92	Kinetic analysis of the thermal degradation of an epoxy-based intumescent coating. Polymer Degradation and Stability, 2009, 94, 404-409.	5.8	48
93	Multiscale Experimental Approach for Developing High-Performance Intumescent Coatings. Industrial & Engineering Chemistry Research, 2006, 45, 4500-4508.	3.7	108
94	High-Throughput Fire Testing for Intumescent Coatings. Industrial & Engineering Chemistry Research, 2006, 45, 7475-7481.	3.7	52
95	Characterization of the performance of an intumescent fire protective coating. Surface and Coatings Technology, 2006, 201, 979-987.	4.8	200
96	Intumescent fire protective coating: Toward a better understanding of their mechanism of action. Thermochimica Acta, 2006, 449, 16-26.	2.7	275
97	Antifouling Stainless Steel Surface: Competition between Roughness and Surface Energy. Materials Science Forum, 0, 706-709, 2523-2528.	0.3	8