Michelle R Gaither

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2572508/publications.pdf

Version: 2024-02-01

65 papers

3,045 citations

212478 28 h-index 53 g-index

66 all docs

66 docs citations

66 times ranked 4100 citing authors

#	Article	IF	CITATIONS
1	One size does not fit all: Tuning eDNA protocols for high―and lowâ€ŧurbidity water sampling. Environmental DNA, 2022, 4, 167-180.	3.1	37
2	Metabarcoding the marine environment: from single species to biogeographic patterns. Environmental DNA, 2022, 4, 3-8.	3.1	17
3	Comparing eDNA metabarcoding primers for assessing fish communities in a biodiverse estuary. PLoS ONE, 2022, 17, e0266720.	1.1	19
4	Dongsha Atoll is an important stepping-stone that promotes regional genetic connectivity in the South China Sea. Peerl, 2021, 9, e12063.	0.9	3
5	Poor data stewardship will hinder global genetic diversity surveillance. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	31
6	A practical guide to sample preservation and preâ€PCR processing of aquatic environmental DNA. Molecular Ecology Resources, 2020, 20, 29-39.	2.2	55
7	Building a global genomics observatory: Using GEOME (the Genomic Observatories Metadatabase) to expedite and improve deposition and retrieval of genetic data and metadata for biodiversity research. Molecular Ecology Resources, 2020, 20, 1458-1469.	2.2	32
8	Does color matter? Molecular and ecological divergence in four sympatric color morphs of a coral reef fish. Ecology and Evolution, 2020, 10, 9663-9681.	0.8	6
9	The physiology of rapid ecological specialization: A look at the Midas cichlids. Molecular Ecology, 2020, 29, 1215-1218.	2.0	1
10	Population genomic response to geographic gradients by widespread and endemic fishes of the Arabian Peninsula. Ecology and Evolution, 2020, 10, 4314-4330.	0.8	16
11	Marine environmental DNA: Approaches, applications, and opportunities. Advances in Marine Biology, 2020, 86, 141-169.	0.7	28
12	Genomic and morphological evidence of distinct populations in the endemic common (weedy) seadragon Phyllopteryx taeniolatus (Syngnathidae) along the east coast of Australia. PLoS ONE, 2020, 15, e0243446.	1.1	9
13	Title is missing!. , 2020, 15, e0243446.		O
14	Title is missing!. , 2020, 15, e0243446.		0
15	Title is missing!. , 2020, 15, e0243446.		O
16	Title is missing!. , 2020, 15, e0243446.		0
17	Title is missing!. , 2020, 15, e0243446.		O
18	Title is missing!. , 2020, 15, e0243446.		0

#	Article	IF	CITATIONS
19	RADseq analyses reveal concordant Indian Ocean biogeographic and phylogeographic boundaries in the reef fish <i>Dascyllus trimaculatus </i> . Royal Society Open Science, 2019, 6, 172413.	1.1	11
20	The molecular biogeography of the Indoâ€Pacific: Testing hypotheses with multispecies genetic patterns. Global Ecology and Biogeography, 2019, 28, 943-960.	2.7	43
21	Genomics of habitat choice and adaptive evolution in a deep-sea fish. Nature Ecology and Evolution, 2018, 2, 680-687.	3.4	41
22	The little shrimp that could: phylogeography of the circumtropical <i>Stenopus hispidus</i> (Crustacea: Decapoda), reveals divergent Atlantic and Pacific lineages. PeerJ, 2018, 6, e4409.	0.9	11
23	Comparative phylogeography of reef fishes from the Gulf of Aden to the Arabian Sea reveals two cryptic lineages. Coral Reefs, 2017, 36, 625-638.	0.9	19
24	Response to Delrieu-Trottin et al.: Hybrids, Color Variants and the Consistently Devilish Taxonomy of Pygmy Angelfishes. Journal of Heredity, 2017, 108, 337-339.	1.0	5
25	Introgression and selection shaped the evolutionary history of sympatric sisterâ€species of coral reef fishes (genus: <i>Haemulon</i>). Molecular Ecology, 2017, 26, 639-652.	2.0	29
26	The Genomic Observatories Metadatabase (GeOMe): A new repository for field and sampling event metadata associated with genetic samples. PLoS Biology, 2017, 15, e2002925.	2.6	72
27	Testing dispersal limits in the sea: rangeâ€wide phylogeography of the pronghorn spiny lobster <i>Panulirus penicillatus</i> . Journal of Biogeography, 2016, 43, 1032-1044.	1.4	32
28	Angelfishes, Paper Tigers, and the Devilish Taxonomy of the <i>Centropyge flavissima </i> Complex. Journal of Heredity, 2016, 107, 647-653.	1.0	17
29	Depth as a driver of evolution in the deep sea: Insights from grenadiers (Gadiformes: Macrouridae) of the genus Coryphaenoides. Molecular Phylogenetics and Evolution, 2016, 104, 73-82.	1.2	26
30	Fishes that rule the world: circumtropical distributions revisited. Fish and Fisheries, 2016, 17, 664-679.	2.7	77
31	Comparative phylogeography of the ocean planet. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 7962-7969.	3.3	190
32	High prevalence of dermal parasites among coral reef fishes of Curaçao. Marine Biodiversity, 2016, 46, 67-74.	0.3	8
33	On the origin of endemic species in the Red Sea. Journal of Biogeography, 2016, 43, 13-30.	1.4	133
34	A review of contemporary patterns of endemism for shallow water reef fauna in the Red Sea. Journal of Biogeography, 2016, 43, 423-439.	1.4	150
35	Genomic signatures of geographic isolation and natural selection in coral reef fishes. Molecular Ecology, 2015, 24, 1543-1557.	2.0	84

Promiscuous associations: observations of gold-saddle goatfishes in the Chagos Archipelago (Indian) Tj ETQq0 0 0 rgBT /Overlock 10 Tf

36

#	Article	IF	CITATIONS
37	Seascape genetics along environmental gradients in the Arabian Peninsula: insights from ddRAD sequencing of anemonefishes. Molecular Ecology, 2015, 24, 6241-6255.	2.0	65
38	Two deep evolutionary lineages in the circumtropical glasseye ⟨i>Heteropriacanthus cruentatus⟨ i> (Teleostei, Priacanthidae) with admixture in the southâ€western Indian Ocean. Journal of Fish Biology, 2015, 87, 715-727.	0.7	11
39	Longâ€ŧerm sperm storage in the brownbanded bamboo shark <i>Chiloscyllium punctatum</i> . Journal of Fish Biology, 2015, 86, 1171-1176.	0.7	31
40	A Coral-reef Fish with Large, Fast, Conspicuous Larvae and Small, Cryptic Adults (Teleostei:) Tj ETQq0 0 0 rgBT /C	Overlock 1 1.4	0 т ₁₂ 50 622 т
41	Evolution of pygmy angelfishes: Recent divergences, introgression, and the usefulness of color in taxonomy. Molecular Phylogenetics and Evolution, 2014, 74, 38-47.	1,2	47
42	Largeâ€scale introduction of the <scp>I</scp> ndoâ€ <scp>P</scp> acific damselfish <i>Abudefduf vaigiensis</i> into <scp>H</scp> awai'i promotes genetic swamping of the endemic congener <i>A.Âabdominalis</i> Molecular Ecology, 2014, 23, 5552-5565.	2.0	49
43	The origins of tropical marine biodiversity. Trends in Ecology and Evolution, 2013, 28, 359-366.	4.2	377
44	Origins of species richness in the Indoâ€Malayâ€Philippine biodiversity hotspot: evidence for the centre of overlap hypothesis. Journal of Biogeography, 2013, 40, 1638-1648.	1.4	149
45	After continents divide: comparative phylogeography of reef fishes from the <scp>R</scp> ed <scp>S</scp> ea and <scp>I</scp> ndian <scp>O</scp> cean. Journal of Biogeography, 2013, 40, 1170-1181.	1.4	110
46	Population structure in the native range predicts the spread of introduced marine species. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20130409.	1.2	31
47	A Pacific grenadier Coryphaenoides acrolepis in the south-west Atlantic and environmental changes in the Falkland deep seas. Marine Biodiversity Records, 2013, 6, .	1.2	7
48	Massively parallel DNA sequencing: the new frontier in biogeography. Frontiers of Biogeography, 2013, 5, .	0.8	4
49	An Invasive Fish and the Time-Lagged Spread of Its Parasite across the Hawaiian Archipelago. PLoS ONE, 2013, 8, e56940.	1.1	33
50	Reclassification of the Indo-Pacific Hawkfish Cirrhitus pinnulatus (Forster) . Zootaxa, 2013, 3599, 189-196.	0.2	6
51	British Indian Ocean Territory (the Chagos Archipelago): Setting, Connections and the Marine Protected Area. Coral Reefs of the World, 2013, , 223-240.	0.3	8
52	Massively parallel DNA sequencing: the new frontier in biogeography. Frontiers of Biogeography, 2013, 5, .	0.8	13
53	Coming out of the starting blocks: extended lag time rearranges genetic diversity in introduced marine fishes of Hawaiâ€~i. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 3948-3957.	1.2	22
54	Twisted sister species of pygmy angelfishes: discordance between taxonomy, coloration, and phylogenetics. Coral Reefs, 2012, 31, 839-851.	0.9	60

#	Article	IF	CITATIONS
55	Reefs and islands of the Chagos Archipelago, Indian Ocean: why it is the world's largest noâ€ŧake marine protected area. Aquatic Conservation: Marine and Freshwater Ecosystems, 2012, 22, 232-261.	0.9	150
56	Defining Boundaries for Ecosystem-Based Management: A Multispecies Case Study of Marine Connectivity across the Hawaiian Archipelago. Journal of Marine Biology, 2011, 2011, 1-13.	1.0	116
57	Preservation of corals in salt-saturated DMSO buffer is superior to ethanol for PCR experiments. Coral Reefs, 2011, 30, 329-333.	0.9	63
58	Swimming ability and its rapid decrease at settlement in wrasse larvae (Teleostei: Labridae). Marine Biology, 2011, 158, 1239-1246.	0.7	27
59	Phylogeography of the reef fish Cephalopholis argus(Epinephelidae) indicates Pleistocene isolation across the indo-pacific barrier with contemporary overlap in the coral triangle. BMC Evolutionary Biology, 2011, 11, 189.	3.2	136
60	High Connectivity in the Deepwater Snapper Pristipomoides filamentosus (Lutjanidae) across the Indo-Pacific with Isolation of the Hawaiian Archipelago. PLoS ONE, 2011, 6, e28913.	1.1	71
61	Genetic evaluation of marine biogeographical barriers: perspectives from two widespread Indoâ€Pacific snappers (<i>Lutjanus kasmira</i> and <i>Lutjanus fulvus</i>). Journal of Biogeography, 2010, 37, 133-147.	1.4	161
62	Isolation and characterization of microsatellite markers for the Crimson Jobfish, Pristipomoides filamentosus (Lutjanidae). Conservation Genetics Resources, 2010, 2, 169-172.	0.4	14
63	Zooxanthellar symbiosis in planula larvae of the coral Pocillopora damicornis. Journal of Experimental Marine Biology and Ecology, 2010, 386, 45-53.	0.7	32
64	Genetic consequences of introducing allopatric lineages of Bluestriped Snapper (Lutjanus kasmira) to Hawaii. Molecular Ecology, 2010, 19, 1107-1121.	2.0	37
65	DNA metabarcoding across disciplines: sequencing our way to greater understanding across scales of biological organization. Integrative and Comparative Biology, 0, , .	0.9	0