Emanuele Treossi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2572310/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale, 2015, 7, 4598-4810.	2.8	2,452
2	Production and processing of graphene and related materials. 2D Materials, 2020, 7, 022001.	2.0	333
3	High-Contrast Visualization of Graphene Oxide on Dye-Sensitized Glass, Quartz, and Silicon by Fluorescence Quenching. Journal of the American Chemical Society, 2009, 131, 15576-15577.	6.6	280
4	Dispersibilityâ€Dependent Biodegradation of Graphene Oxide by Myeloperoxidase. Small, 2015, 11, 3985-3994.	5.2	215
5	Graphene Oxide as a Practical Solution to High Sensitivity Gas Sensing. Journal of Physical Chemistry C, 2013, 117, 10683-10690.	1.5	195
6	Graphene: The Exfoliation of Graphene in Liquids by Electrochemical, Chemical, and Sonicationâ€Assisted Techniques: A Nanoscale Study (Adv. Funct. Mater. 37/2013). Advanced Functional Materials, 2013, 23, 4756-4756.	7.8	184
7	Accurate chemical analysis of oxygenated graphene-based materials using X-ray photoelectron spectroscopy. Carbon, 2019, 143, 268-275.	5.4	183
8	Evidencing the mask effect of graphene oxide: a comparative study on primary human and murine phagocytic cells. Nanoscale, 2013, 5, 11234.	2.8	166
9	Local Current Mapping and Patterning of Reduced Graphene Oxide. Journal of the American Chemical Society, 2010, 132, 14130-14136.	6.6	140
10	Electrochemical Functionalization of Graphene at the Nanoscale with Self-Assembling Diazonium Salts. ACS Nano, 2016, 10, 7125-7134.	7.3	132
11	Charge transport in graphene–polythiophene blends as studied by Kelvin Probe Force Microscopy and transistor characterization. Journal of Materials Chemistry, 2011, 21, 2924.	6.7	127
12	Nanoscale insight into the exfoliation mechanism of graphene with organic dyes: effect of charge, dipole and molecular structure. Nanoscale, 2013, 5, 4205.	2.8	116
13	Fragmentation and exfoliation of 2-dimensional materials: a statistical approach. Nanoscale, 2014, 6, 5926-5933.	2.8	100
14	Large Work Function Shift of Gold Induced by a Novel Perfluorinated Azobenzeneâ€Based Selfâ€Assembled Monolayer. Advanced Materials, 2013, 25, 432-436.	11.1	93
15	Evolution of the size and shape of 2D nanosheets during ultrasonic fragmentation. 2D Materials, 2017, 4, 025017.	2.0	85
16	Facile covalent functionalization of graphene oxide using microwaves: bottom-up development of functional graphitic materials. Journal of Materials Chemistry, 2010, 20, 9052.	6.7	82
17	Nonâ€conventional Processing and Postâ€processing Methods for the Nanostructuring of Conjugated Materials for Organic Electronics. Advanced Functional Materials, 2011, 21, 1279-1295.	7.8	81
18	Structural reinforcement and failure analysis in composite nanofibers of graphene oxide and gelatin. Carbon, 2014, 78, 566-577.	5.4	81

Emanuele Treossi

#	Article	IF	CITATIONS
19	Benchmarking of graphene-based materials: real commercial products versus ideal graphene. 2D Materials, 2019, 6, 025006.	2.0	68
20	Solvent vapour annealing of organic thin films: controlling the self-assembly of functional systems across multiple length scales. Journal of Materials Chemistry, 2010, 20, 2493.	6.7	63
21	Cooperative Effect of GO and Glucose on PEDOT:PSS for High <i>V</i> _{OC} and Hysteresisâ€Free Solutionâ€Processed Perovskite Solar Cells. Advanced Functional Materials, 2016, 26, 6985-6994.	7.8	61
22	Synergic Exfoliation of Graphene with Organic Molecules and Inorganic Ions for the Electrochemical Production of Flexible Electrodes. ChemPlusChem, 2014, 79, 439-446.	1.3	60
23	Graphene Transistors via in Situ Voltage-Induced Reduction of Graphene-Oxide under Ambient Conditions. Journal of the American Chemical Society, 2011, 133, 14320-14326.	6.6	55
24	The Relationship between Nanoscale Architecture and Charge Transport in Conjugated Nanocrystals Bridged by Multichromophoric Polymers. Journal of the American Chemical Society, 2009, 131, 7055-7063.	6.6	52
25	Use of Optical Contrast To Estimate the Degree of Reduction of Graphene Oxide. Journal of Physical Chemistry C, 2013, 117, 620-625.	1.5	52
26	Temperatureâ€Enhanced Solvent Vapor Annealing of a <i>C</i> ₃ Symmetric Hexaâ€ <i>peri</i> â€Hexabenzocoronene: Controlling the Selfâ€Assembly from Nano―to Macroscale. Small, 2009, 5, 112-119.	5.2	51
27	Multicolor, large-area fluorescence sensing through oligothiophene-self-assembled monolayers. Chemical Communications, 2011, 47, 1689-1691.	2.2	51
28	The Exfoliation of Graphene in Liquids by Electrochemical, Chemical, and Sonicationâ€Assisted Techniques: A Nanoscale Study. Advanced Functional Materials, 2013, 23, 4684-4693.	7.8	50
29	Reduction dependent wetting properties of graphene oxide. Carbon, 2014, 77, 473-480.	5.4	49
30	Large Area Extreme-UV Lithography of Graphene Oxide via Spatially Resolved Photoreduction. Langmuir, 2012, 28, 5489-5495.	1.6	46
31	Graphene oxide for gas detection under standard humidity conditions. 2D Materials, 2015, 2, 035018.	2.0	46
32	Observation of different charge transport regimes and large magnetoresistance in graphene oxide layers. Carbon, 2015, 89, 188-196.	5.4	42
33	Graphene–organic hybrids as processable, tunable platforms for pH-dependent photoemission, obtained by a new modular approach. Journal of Materials Chemistry, 2012, 22, 18237.	6.7	30
34	Playing peekaboo with graphene oxide: a scanning electrochemical microscopy investigation. Chemical Communications, 2014, 50, 13117-13120.	2.2	30
35	Enhanced mobility in P3HT-based OTFTs upon blending with a phenylene–thiophene–thiophene–thiophene–phenylene small molecule. Chemical Communications, 2012, 48, 1562-1564.	2.2	29
36	Soft confinement of water in graphene-oxide membranes. Carbon, 2016, 108, 199-203.	5.4	27

Emanuele Treossi

#	Article	lF	CITATIONS
37	Supramolecular self-assembly of graphene oxide and metal nanoparticles into stacked multilayers by means of a multitasking protein ring. Nanoscale, 2016, 8, 6739-6753.	2.8	24
38	Improved Biocompatibility of Aminoâ€Functionalized Graphene Oxide in <i>Caenorhabditis elegans</i> . Small, 2019, 15, e1902699.	5.2	22
39	Graphene oxide–polysulfone filters for tap water purification, obtained by fast microwave oven treatment. Nanoscale, 2019, 11, 22780-22787.	2.8	21
40	UV Reduced Graphene Oxide PEDOT:PSS Nanocomposite for Perovskite Solar Cells. IEEE Nanotechnology Magazine, 2016, 15, 725-730.	1.1	19
41	Dose and wavelength dependent study of graphene oxide photoreduction with VUV Synchrotron radiation. Carbon, 2014, 79, 478-485.	5.4	18
42	Graphene glial-interfaces: challenges and perspectives. Nanoscale, 2021, 13, 4390-4407.	2.8	18
43	Modulation of charge transport properties of reduced graphene oxide by submonolayer physisorption of an organic dye. Organic Electronics, 2013, 14, 1787-1792.	1.4	17
44	Polymeric micelles using pseudo-amphiphilic block copolymers and their cellular uptake. Journal of Materials Chemistry, 2011, 21, 2555.	6.7	14
45	GO/PEDOT:PSS nanocomposites: effect of different dispersing agents on rheological, thermal, wettability and electrochemical properties. Nanotechnology, 2017, 28, 174001.	1.3	14
46	Large-area bi-component processing of organic semiconductors by spray deposition and spin coating with orthogonal solvents. Applied Physics A: Materials Science and Processing, 2009, 95, 15-20.	1.1	12
47	Thermal treatment and chemical doping of semi-transparent graphene films. Organic Electronics, 2015, 18, 53-60.	1.4	11
48	Selfâ€Complementary Nucleosideâ€Thiophene Hybrid Systems: Synthesis and Supramolecular Organization. Macromolecular Rapid Communications, 2010, 31, 351-355.	2.0	10
49	Electrostatic transparency of graphene oxide sheets. Carbon, 2015, 86, 188-196.	5.4	10
50	Lateral dimension and amino-functionalization on the balance to assess the single-cell toxicity of graphene on fifteen immune cell types. NanoImpact, 2021, 23, 100330.	2.4	8
51	Improving charge transport in poly(3â€hexylthiophene) transistors via blending with an alkylâ€substituted phenylene–thiophene–thiophene–phenylene molecule. Journal of Polymer Science, Part B: Polymer Physics, 2012, 50, 642-649.	2.4	6
52	Enhancing triboelectric performances of electrospun poly(vinylidene fluoride) with graphene oxide sheets. Graphene Technology, 2020, 5, 49-57.	1.9	5
53	The role of charge transfer at reduced graphene oxide/organic semiconductor interface on the charge transport properties. Organic Electronics, 2020, 77, 105499.	1.4	3
54	Polymeric Micelles Using Pseudoâ€Amphiphilic Block Copolymers. Macromolecular Symposia, 2012, 313-314, 51-58.	0.4	1

#	Article	IF	CITATIONS
55	Polymer Nanocomposites based on in situ reduced graphene oxide for photovoltaic applications in innovative hybrid solar cells. , 2015, , .		0