Michael J Mccluskie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/257228/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Adjuvants: Engineering Protective Immune Responses in Human and Veterinary Vaccines. Methods in Molecular Biology, 2022, 2412, 179-231.	0.4	7
2	Generation of a Liposomal Vaccine Adjuvant Based on Sulfated S-Lactosylarchaeol (SLA) Glycolipids. Methods in Molecular Biology, 2022, 2412, 255-267.	0.4	1
3	Intranasal immunization with a proteosome-adjuvanted SARS-CoV-2 spike protein-based vaccine is immunogenic and efficacious in mice and hamsters. Scientific Reports, 2022, 12, .	1.6	13
4	Assessment of stability of sulphated lactosyl archaeol archaeosomes for use as a vaccine adjuvant. Journal of Liposome Research, 2021, 31, 237-245.	1.5	8
5	Sulfated Lactosyl Archaeol Archaeosomes Synergize with Poly(I:C) to Enhance the Immunogenicity and Efficacy of a Synthetic Long Peptide-Based Vaccine in a Melanoma Tumor Model. Pharmaceutics, 2021, 13, 257.	2.0	7
6	The Synergistic Effects of Sulfated Lactosyl Archaeol Archaeosomes When Combined with Different Adjuvants in a Murine Model. Pharmaceutics, 2021, 13, 205.	2.0	9
7	The Quantification of Antigen-Specific T Cells by IFN-γ ELISpot. Methods in Molecular Biology, 2021, 2183, 525-536.	0.4	10
8	A Method to Evaluate In Vivo CD8+ T Cell Cytotoxicity in a Murine Model. Methods in Molecular Biology, 2021, 2183, 549-558.	0.4	5
9	Methods to Evaluate Immune Cell Recruitment and Cellular Uptake and Distribution of Antigen Following Intramuscular Administration of Vaccine to Mice. Methods in Molecular Biology, 2021, 2183, 513-524.	0.4	0
10	Immunogenic and efficacious SARS-CoV-2 vaccine based on resistin-trimerized spike antigen SmT1 and SLA archaeosome adjuvant. Scientific Reports, 2021, 11, 21849.	1.6	26
11	Application of Cryogenic Transmission Electron Microscopy for Evaluation of Vaccine Delivery Carriers. Methods in Molecular Biology, 2021, 2183, 499-511.	0.4	1
12	Measurement of Antigen-Specific IgG Titers by Direct ELISA. Methods in Molecular Biology, 2021, 2183, 537-547.	0.4	6
13	Mechanistic insight into the induction of cellular immune responses by encapsulated and admixed archaeosome-based vaccine formulations. Human Vaccines and Immunotherapeutics, 2020, 16, 2183-2195.	1.4	14
14	Adjuvanted Schistosoma mansoni-Cathepsin B With Sulfated Lactosyl Archaeol Archaeosomes or AddaVaxâ,,¢ Provides Protection in a Pre-Clinical Schistosomiasis Model. Frontiers in Immunology, 2020, 11, 605288.	2.2	14
15	Archaeal glycolipid adjuvanted vaccines induce strong influenza-specific immune responses through direct immunization in young and aged mice or through passive maternal immunization. Vaccine, 2019, 37, 7108-7116.	1.7	24
16	Evaluation of recombinant adenovirus vectors and adjuvanted protein as a heterologous prime-boost strategy using HER2 as a model antigen. Vaccine, 2019, 37, 7029-7040.	1.7	13
17	A comparison of the immune responses induced by antigens in three different archaeosome-based vaccine formulations. International Journal of Pharmaceutics, 2019, 561, 187-196.	2.6	34
18	Simplified Admix Archaeal Glycolipid Adjuvanted Vaccine and Checkpoint Inhibitor Therapy Combination Enhances Protection from Murine Melanoma. Biomedicines, 2019, 7, 91.	1.4	21

MICHAEL J MCCLUSKIE

#	Article	IF	CITATIONS
19	Effect of Different Adjuvants on the Longevity and Strength of Humoral and Cellular Immune Responses to the HCV Envelope Glycoproteins. Vaccines, 2019, 7, 204.	2.1	23
20	Safety and biodistribution of sulfated archaeal glycolipid archaeosomes as vaccine adjuvants. Human Vaccines and Immunotherapeutics, 2018, 14, 1746-1759.	1.4	21
21	<i>In vitro</i> evaluation of archaeosome vehicles for transdermal vaccine delivery. Journal of Liposome Research, 2018, 28, 305-314.	1.5	10
22	Sulfated archaeol glycolipids: Comparison with other immunological adjuvants in mice. PLoS ONE, 2018, 13, e0208067.	1.1	28
23	Sulfated archaeal glycolipid archaeosomes as a safe and effective vaccine adjuvant for induction of cell-mediated immunity. Human Vaccines and Immunotherapeutics, 2017, 13, 2772-2779.	1.4	29
24	The Effect of Physicochemical Modification on the Function of Antibodies Induced by Anti-Nicotine Vaccine in Mice. Vaccines, 2017, 5, 11.	2.1	14
25	An Archaeosome-Adjuvanted Vaccine and Checkpoint Inhibitor Therapy Combination Significantly Enhances Protection from Murine Melanoma. Vaccines, 2017, 5, 38.	2.1	14
26	Homologous Prime-Boost Vaccination with OVA Entrapped in Self-Adjuvanting Archaeosomes Induces High Numbers of OVA-Specific CD8+ T Cells that Protect Against Subcutaneous B16-OVA Melanoma. Vaccines, 2016, 4, 44.	2.1	9
27	Anti-IgE Qb-VLP Conjugate Vaccine Self-Adjuvants through Activation of TLR7. Vaccines, 2016, 4, 3.	2.1	20
28	Support for the revocation of general safety test regulations in biologics license applications. Biologicals, 2016, 44, 178-181.	0.5	0
29	Molecular attributes of conjugate antigen influence function of antibodies induced by anti-nicotine vaccine in mice and non-human primates. International Immunopharmacology, 2015, 25, 518-527.	1.7	36
30	Anti-nicotine vaccines: Comparison of adjuvanted CRM 197 and Qb-VLP conjugate formulations for immunogenicity and function in non-human primates. International Immunopharmacology, 2015, 29, 663-671.	1.7	39
31	Enhancing immunogenicity of a 3′aminomethylnicotine-DT-conjugate anti-nicotine vaccine with CpG adjuvant in mice and non-human primates. International Immunopharmacology, 2013, 16, 50-56.	1.7	53
32	CpG ODN and ISCOMATRIX Adjuvant: A Synergistic Adjuvant Combination Inducing Strong T-Cell IFN- <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">id="M1"><mml:mrow><mml:mi>i3</mml:mi></mml:mrow></mml:math> Responses. BioMed Research International 2013 2013 111	0.9	20
33	Selection of a Novel Anti-Nicotine Vaccine: Influence of Antigen Design on Antibody Function in Mice. PLoS ONE, 2013, 8, e76557.	1.1	71
34	Single and Combination Herpes Simplex Virus Type 2 Glycoprotein Vaccines Adjuvanted with CpG Oligodeoxynucleotides or Monophosphoryl Lipid A Exhibit Differential Immunity That Is Not Correlated to Protection in Animal Models. Vaccine Journal, 2011, 18, 1702-1709.	3.2	25
35	TLR agonists as vaccine adjuvants: comparison of CpG ODN and Resiquimod (R-848). Vaccine, 2005, 23, 5263-5270.	1.7	145
36	CpG DNA induces stronger immune responses with less toxicity than other adjuvants. Vaccine, 2000, 18, 1755-1762.	1.7	227

#	Article	IF	CITATIONS
37	Effect of Chiral Purity on Adjuvanticity of Archaeol-Based Glycolipids. Journal of Medicinal Chemistry, 0, , .	2.9	2