## **Denis Hughes**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2572099/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Assessing the potential value of the regionalised input constraint indices for constraining<br>hydrological model simulations in the Congo River Basin. Advances in Water Resources, 2022, 159,<br>104093.                                       | 1.7 | 1         |
| 2  | Prediction of sediment yield of the Inxu River catchment (South Africa) using the MUSLE.<br>International Soil and Water Conservation Research, 2021, 9, 37-48.                                                                                  | 3.0 | 24        |
| 3  | Unpacking some of the linkages between uncertainties in observational data and the simulation of<br>different hydrological processes using the Pitman model in the data scarce Zambezi River basin.<br>Hydrological Processes, 2021, 35, e14141. | 1.1 | 3         |
| 4  | ADHI: the African Database of Hydrometric Indices (1950–2018). Earth System Science Data, 2021, 13,<br>1547-1560.                                                                                                                                | 3.7 | 18        |
| 5  | Evaluation of the Drivers Responsible for Flooding in Africa. Water Resources Research, 2021, 57, e2021WR029595.                                                                                                                                 | 1.7 | 27        |
| 6  | Temporal Influences of Vegetation Cover (C) Dynamism on MUSLE Sediment Yield Estimates: NDVI<br>Evaluation. Water (Switzerland), 2021, 13, 2707.                                                                                                 | 1.2 | 4         |
| 7  | Understanding and modelling the effects of wetland on the hydrology and water resources of large<br>African river basins. Journal of Hydrology, 2021, 603, 127039.                                                                               | 2.3 | 9         |
| 8  | Integrating Sediment (dis)Connectivity into a Sediment Yield Model for Semi-Arid Catchments. Land, 2021, 10, 1204.                                                                                                                               | 1.2 | 0         |
| 9  | Delineating wetland areas from the cut-and-fill method using a Digital Elevation Model (DEM).<br>Southern African Geographical Journal, 2020, 102, 97-115.                                                                                       | 0.9 | 7         |
| 10 | Establishing uncertainty ranges of hydrologic indices across climate and physiographic regions of the Congo River Basin. Journal of Hydrology: Regional Studies, 2020, 30, 100710.                                                               | 1.0 | 5         |
| 11 | Assessing development and climate variability impacts on water resources in the Zambezi River basin.<br>Simulating future scenarios of climate and development. Journal of Hydrology: Regional Studies,<br>2020, 32, 100763.                     | 1.0 | 7         |
| 12 | Assessing development and climate variability impacts on water resources in the Zambezi River basin:<br>Initial model calibration, uncertainty issues and performance. Journal of Hydrology: Regional Studies,<br>2020, 32, 100765.              | 1.0 | 5         |
| 13 | A simple approach to estimating channel transmission losses in large South African river basins.<br>Journal of Hydrology: Regional Studies, 2019, 25, 100619.                                                                                    | 1.0 | 9         |
| 14 | Towards revised physically based parameter estimation methods for the Pitman monthly rainfall-runoff model. Water S A, 2019, 34, 183.                                                                                                            | 0.2 | 25        |
| 15 | Facing a future water resources management crisis in sub-Saharan Africa. Journal of Hydrology:<br>Regional Studies, 2019, 23, 100600.                                                                                                            | 1.0 | 17        |
| 16 | Quantification of water resources uncertainties in the Luvuvhu sub-basin of the Limpopo river basin.<br>Physics and Chemistry of the Earth, 2018, 105, 52-58.                                                                                    | 1.2 | 3         |
| 17 | Spatial scale dependency issues in the application of the Modified Universal Soil Loss Equation (MUSLE). Hydrological Sciences Journal, 2018, 63, 1890-1900.                                                                                     | 1.2 | 13        |
| 18 | The delineation of alluvial aquifers towards a better understanding of channel transmission losses in the Limpopo River Basin. Physics and Chemistry of the Earth, 2018, 108, 60-73.                                                             | 1.2 | 7         |

| #  | Article                                                                                                                                                                                                  | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Application of satellite-derived rainfall estimates to extend water resource simulation modelling in<br>South Africa. Water S A, 2018, 34, 1.                                                            | 0.2 | 40        |
| 20 | Environmental Flow Requirements Setting: Desktop Methods. , 2018, , 1825-1828.                                                                                                                           |     | 0         |
| 21 | Estimating spatial catchment natural hydrological response characteristics in Swaziland. Physics and<br>Chemistry of the Earth, 2018, 106, 29-36.                                                        | 1.2 | 0         |
| 22 | Simulating saturationâ€excess surface runâ€off in a semiâ€distributed hydrological model. Hydrological<br>Processes, 2018, 32, 2685-2694.                                                                | 1.1 | 6         |
| 23 | Regional water resources assessments using an uncertain modelling approach: The example of<br>Swaziland. Journal of Hydrology: Regional Studies, 2017, 10, 47-60.                                        | 1.0 | 12        |
| 24 | Correcting bias in rainfall inputs to a semi-distributed hydrological model using downstream flow simulation errors. Hydrological Sciences Journal, 2017, 62, 2427-2439.                                 | 1.2 | 3         |
| 25 | A management-oriented water quality model for data scarce catchments. Environmental Modelling and Software, 2017, 97, 93-111.                                                                            | 1.9 | 32        |
| 26 | Linking Hydrological Uncertainty with Equitable Allocation for Water Resources Decision-Making.<br>Water Resources Management, 2017, 31, 269-282.                                                        | 1.9 | 10        |
| 27 | Hydrological modelling, process understanding and uncertainty in a southern African context:<br>lessons from the northern hemisphere. Hydrological Processes, 2016, 30, 2419-2431.                       | 1.1 | 15        |
| 28 | Joint editorial: Fostering innovation and improving impact assessment for journal publications in hydrology. Water Resources Research, 2016, 52, 2399-2402.                                              | 1.7 | 9         |
| 29 | Disaggregating the components of a monthly water resources system model to daily values for use with a water quality model. Environmental Modelling and Software, 2016, 80, 122-131.                     | 1.9 | 9         |
| 30 | Joint Editorial: Fostering innovation and improving impact assessment for journal publications in hydrology. Hydrology and Earth System Sciences, 2016, 20, 1081-1084.                                   | 1.9 | 2         |
| 31 | Simulating temporal variability in catchment response using a monthly rainfall–runoff model.<br>Hydrological Sciences Journal, 2015, 60, 1286-1298.                                                      | 1.2 | 16        |
| 32 | Surface water–groundwater interactions in catchment scale water resources<br>assessments—understanding and hypothesis testing with a hydrological model. Hydrological Sciences<br>Journal, 2015, , 1-16. | 1.2 | 9         |
| 33 | A method to disaggregate monthly flows to daily using daily rainfall observations: model design and testing. Hydrological Sciences Journal, 2015, , 1-15.                                                | 1.2 | 6         |
| 34 | Daily disaggregation of simulated monthly flows using different rainfall datasets in southern Africa.<br>Journal of Hydrology: Regional Studies, 2015, 4, 153-171.                                       | 1.0 | 18        |
| 35 | Accelerating a hydrological uncertainty ensemble model using graphics processing units (GPUs).<br>Computers and Geosciences, 2014, 62, 178-186.                                                          | 2.0 | 10        |
| 36 | A new approach to rapid, desktop-level, environmental flow assessments for rivers in South Africa.<br>Hydrological Sciences Journal, 2014, 59, 673-687.                                                  | 1.2 | 24        |

| #  | Article                                                                                                                                                                                                               | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Improving the visibility of hydrological sciences from developing countries. Hydrological Sciences<br>Journal, 2014, 59, 1627-1635.                                                                                   | 1.2 | 6         |
| 38 | Simulating wetland impacts on stream flow in southern Africa using a monthly hydrological model.<br>Hydrological Processes, 2014, 28, 1775-1786.                                                                      | 1.1 | 31        |
| 39 | Basin-scale performance of a semidistributed rainfall-runoff model for hydrological predictions and<br>water resources assessment of large rivers: The Congo River. Water Resources Research, 2014, 50,<br>1174-1188. | 1.7 | 65        |
| 40 | Using targeted short-term field investigations to calibrate and evaluate the structure of a hydrological model. Hydrological Processes, 2014, 28, 2794-2809.                                                          | 1.1 | 5         |
| 41 | Satellite earth observation as a tool to conceptualize hydrogeological fluxes in the Sandveld, South<br>Africa. Hydrogeology Journal, 2013, 21, 1053-1070.                                                            | 0.9 | 21        |
| 42 | A review of 40 years of hydrological science and practice in southern Africa using the Pitman rainfall-runoff model. Journal of Hydrology, 2013, 501, 111-124.                                                        | 2.3 | 51        |
| 43 | A decade of Predictions in Ungauged Basins (PUB)—a review. Hydrological Sciences Journal, 2013, 58,<br>1198-1255.                                                                                                     | 1.2 | 821       |
| 44 | "Panta Rhei—Everything Flows― Change in hydrology and society—The IAHS Scientific Decade<br>2013–2022. Hydrological Sciences Journal, 2013, 58, 1256-1275.                                                            | 1.2 | 569       |
| 45 | Hydrologic Modeling, Uncertainty, and Sensitivity in the Okavango Basin: Insights for Scenario<br>Assessment. Journal of Hydrologic Engineering - ASCE, 2013, 18, 1767-1778.                                          | 0.8 | 13        |
| 46 | A simple model to separately simulate point and diffuse nutrient signatures in stream flows.<br>Hydrology Research, 2013, 44, 538-553.                                                                                | 1.1 | 9         |
| 47 | Incorporating uncertainty in hydrological predictions for gauged and ungauged basins in southern<br>Africa. Hydrological Sciences Journal, 2012, 57, 1000-1019.                                                       | 1.2 | 85        |
| 48 | Climate change and impacts on the hydrology of the Congo Basin: The case of the northern sub-basins of the Oubangui and Sangha Rivers. Physics and Chemistry of the Earth, 2012, 50-52, 72-83.                        | 1.2 | 36        |
| 49 | Hydrological education and training needs in sub-Saharan Africa: requirements, constraints and progress. Hydrology and Earth System Sciences, 2012, 16, 861-871.                                                      | 1.9 | 5         |
| 50 | Reliability of body condition scoring of sheep for cross-farm assessments. Small Ruminant Research, 2012, 104, 156-162.                                                                                               | 0.6 | 21        |
| 51 | Initial calibration of a semi-distributed rainfall runoff model for the Congo River basin. Physics and Chemistry of the Earth, 2011, 36, 761-774.                                                                     | 1.2 | 25        |
| 52 | Regional droughts and food security relationships in the Zambezi River Basin. Physics and Chemistry of the Earth, 2011, 36, 977-983.                                                                                  | 1.2 | 17        |
| 53 | Uncertainty in water resources availability in the Okavango River basin as a result of climate change.<br>Hydrology and Earth System Sciences, 2011, 15, 931-941.                                                     | 1.9 | 64        |
| 54 | Regionalization of models for operational purposes in developing countries: an introduction.<br>Hydrology Research, 2011, 42, 331-337.                                                                                | 1.1 | 7         |

| #  | Article                                                                                                                                                                                                          | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Climate Change Impacts on Hydrology in Africa: Case Studies of River Basin Water Resources. Advances<br>in Global Change Research, 2011, , 123-153.                                                              | 1.6 | 4         |
| 56 | Hydrological model uncertainty assessment in southern Africa. Journal of Hydrology, 2010, 387, 221-232.                                                                                                          | 2.3 | 47        |
| 57 | Unsaturated zone fracture flow contributions to stream flow: evidence for the process in South Africa and its importance. Hydrological Processes, 2010, 24, 767-774.                                             | 1.1 | 15        |
| 58 | Hydrological models: mathematics or science?. Hydrological Processes, 2010, 24, 2199-2201.                                                                                                                       | 1.1 | 8         |
| 59 | Integrating hydrology, hydraulics and ecological response into a flexible approach to the determination of environmental water requirements for rivers. Environmental Modelling and Software, 2010, 25, 910-918. | 1.9 | 32        |
| 60 | Using satellite-based rainfall data to support the implementation of environmental water requirements in South Africa. Water S A, 2010, 36, .                                                                    | 0.2 | 1         |
| 61 | Initial evaluation of a simple coupled surface and ground water hydrological model to assess sustainable ground water abstractions at the regional scale. Hydrology Research, 2010, 41, 1-12.                    | 1.1 | 10        |
| 62 | Estimating the uncertainty in simulating the impacts of small farm dams on streamflow regimes in<br>South Africa. Hydrological Sciences Journal, 2010, 55, 578-592.                                              | 1.2 | 50        |
| 63 | The importance of operating rules and assessments of beneficial use in water resource allocation policy and management. Water Policy, 2009, 11, 731-741.                                                         | 0.7 | 8         |
| 64 | Simulating Climate Impacts on Water Resources: Experience from the Okavango River, Southern<br>Africa. Water Science and Technology Library, 2009, , 243-265.                                                    | 0.2 | 3         |
| 65 | The Thyrotropinâ€Releasing Hormone Secretory System in the Hypothalamus of the Siberian Hamster in<br>Long and Short Photoperiods. Journal of Neuroendocrinology, 2008, 20, 576-586.                             | 1.2 | 23        |
| 66 | A simple model for assessing utilisable streamflow allocations in the context of the Ecological Reserve. Water S A, 2007, 32, .                                                                                  | 0.2 | 2         |
| 67 | Automated estimation and analyses of meteorological drought characteristics from monthly rainfall data. Environmental Modelling and Software, 2007, 22, 880-890.                                                 | 1.9 | 103       |
| 68 | Comparison of satellite rainfall data with observations from gauging station networks. Journal of<br>Hydrology, 2006, 327, 399-410.                                                                              | 2.3 | 160       |
| 69 | Impact of climate change and development scenarios on flow patterns in the Okavango River. Journal of Hydrology, 2006, 331, 43-57.                                                                               | 2.3 | 117       |
| 70 | Regional calibration of the Pitman model for the Okavango River. Journal of Hydrology, 2006, 331,<br>30-42.                                                                                                      | 2.3 | 99        |
| 71 | Estimating rainfall and water balance over the Okavango River Basin for hydrological applications.<br>Journal of Hydrology, 2006, 331, 18-29.                                                                    | 2.3 | 95        |
| 72 | A generic database and spatial interface for the application of hydrological and water resource models. Computers and Geosciences, 2006, 32, 1389-1402.                                                          | 2.0 | 25        |

| #  | Article                                                                                                                                                                                                        | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Hydrology-based assessment of environmental flows: an example from Nepal. Hydrological Sciences<br>Journal, 2006, 51, 207-222.                                                                                 | 1.2 | 94        |
| 74 | Problems of estimating hydrological characteristics for small catchments based on information from the South African national surface water resource database. Water S A, 2004, 30, 393.                       | 0.2 | 3         |
| 75 | Continuous baseflow separation from time series of daily and monthly streamflow data. Water S A, 2004, 29, 43.                                                                                                 | 0.2 | 13        |
| 76 | Pregnancy related pituitary enlargement mimicking macroadenoma. British Journal of Neurosurgery,<br>2004, 18, 524-526.                                                                                         | 0.4 | 6         |
| 77 | Water flow dynamics in the Okavango River Basin and Delta––a prerequisite for the ecosystems of the Delta. Physics and Chemistry of the Earth, 2003, 28, 1165-1172.                                            | 1.2 | 50        |
| 78 | A desktop model used to provide an initial estimate of the ecological instream flow requirements of rivers in South Africa. Journal of Hydrology, 2003, 270, 167-181.                                          | 2.3 | 137       |
| 79 | ISSUES IN CONTEMPORARY GEOGRAPHICAL HYDROLOGY. Southern African Geographical Journal, 2002, 84, 139-144.                                                                                                       | 0.9 | 0         |
| 80 | Giant lymph node hyperplasia a diagnostic dilemma in the neck. Auris Nasus Larynx, 2001, 28, 185-188.                                                                                                          | 0.5 | 10        |
| 81 | Providing hydrological information and data analysis tools for the determination of ecological instream flow requirements for South African rivers. Journal of Hydrology, 2001, 241, 140-151.                  | 2.3 | 66        |
| 82 | The IFR process: beyond the specialist workshop. African Journal of Aquatic Science, 2000, 25, 183-190.                                                                                                        | 0.5 | 5         |
| 83 | Evaluating the performance of a deterministic daily rainfall–runoff model in a low-flow context.<br>Hydrological Processes, 1998, 12, 797-812.                                                                 | 1.1 | 25        |
| 84 | Assessment of three monthly rainfall-runoff models for estimating the water resource yield of semiarid catchments in Namibia. Hydrological Sciences Journal, 1998, 43, 283-297.                                | 1.2 | 14        |
| 85 | Regionalization of daily flow characteristics in part of the Eastern Cape, South Africa. Hydrological<br>Sciences Journal, 1997, 42, 919-936.                                                                  | 1.2 | 81        |
| 86 | Effect of Flow Distribution on Scale Formation in Plate and Frame Heat Exchangers. Chemical<br>Engineering Research and Design, 1997, 75, 635-640.                                                             | 2.7 | 21        |
| 87 | A comparison of recharge estimates to a fractured sedimentary aquifer in South Africa from a<br>chloride mass balance and an integrated surface-subsurface model. Journal of Hydrology, 1996, 179,<br>111-136. | 2.3 | 52        |
| 88 | Daily flow time series patching or extension: a spatial interpolation approach based on flow duration curves. Hydrological Sciences Journal, 1996, 41, 851-871.                                                | 1.2 | 135       |
| 89 | Monthly rainfall-runoff models applied to arid and semiarid catchments for water resource estimation purposes. Hydrological Sciences Journal, 1995, 40, 751-769.                                               | 1.2 | 55        |
| 90 | Soil moisture and runoff simulations using four catchment rainfall-runoff models. Journal of Hydrology, 1994, 158, 381-404.                                                                                    | 2.3 | 18        |

| #   | Article                                                                                                                                                                                                                   | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | A semi-distributed, variable time interval model of catchment hydrology—structure and parameter estimation procedures. Journal of Hydrology, 1994, 155, 265-291.                                                          | 2.3 | 35        |
| 92  | Variable time intervals in deterministic hydrological models. Journal of Hydrology, 1993, 143, 217-232.                                                                                                                   | 2.3 | 10        |
| 93  | Transmission losses to alluvium and associated moisture dynamics in a semiarid ephemeral channel system in Southern Africa. Hydrological Processes, 1992, 6, 45-53.                                                       | 1.1 | 67        |
| 94  | The applicability of two single event models to catchments with different physical characteristics.<br>Hydrological Sciences Journal, 1989, 34, 63-78.                                                                    | 1.2 | 9         |
| 95  | Estimation of the parameters of an isolated event conceptual model from physical catchment characteristics. Hydrological Sciences Journal, 1989, 34, 539-557.                                                             | 1.2 | 14        |
| 96  | Non-linear runoff routing — A comparison of solution methods. Journal of Hydrology, 1986, 85,<br>339-347.                                                                                                                 | 2.3 | 15        |
| 97  | 8867-70 DISCUSSION. JAMUNA RIVER 230kV CROSSING, BANGLADESH Proceedings of the Institution of Civil Engineers, 1986, 80, 731-753.                                                                                         | 0.1 | 0         |
| 98  | An isolated event model based upon direct runoff calculations using an implicit source area concept.<br>Hydrological Sciences Journal, 1984, 29, 311-325.                                                                 | 1.2 | 9         |
| 99  | JAMUNA RIVER 230 KV CROSSING - BANGLADESH II, DESIGN OF TRANSMISSION LINE Proceedings of the<br>Institution of Civil Engineers, 1984, 76, 951-964.                                                                        | 0.1 | 0         |
| 100 | A small-scale flood plain. Sedimentology, 1982, 29, 891-895.                                                                                                                                                              | 1.6 | 36        |
| 101 | Welsh floodplain studies. Journal of Hydrology, 1980, 46, 35-49.                                                                                                                                                          | 2.3 | 46        |
| 102 | A review of aspects of hydrological sciences research in Africa over the past decade. Hydrological Sciences Journal, 0, , 1-15.                                                                                           | 1.2 | 9         |
| 103 | Uncertain hydrological modelling: application of the Pitman model in the Great Ruaha River basin,<br>Tanzania. Hydrological Sciences Journal, 0, , 1-15.                                                                  | 1.2 | 8         |
| 104 | Scientific and practical tools for dealing with water resource estimations for the future.<br>Proceedings of the International Association of Hydrological Sciences, 0, 371, 23-28.                                       | 1.0 | 3         |
| 105 | Regionalising MUSLE factors for application to a data-scarce catchment. Proceedings of the International Association of Hydrological Sciences, 0, 377, 19-24.                                                             | 1.0 | 7         |
| 106 | Parameter and input data uncertainty estimation for the assessment of water resources in two sub-basins of the Limpopo River Basin. Proceedings of the International Association of Hydrological Sciences, 0, 378, 11-16. | 1.0 | 4         |
| 107 | Modelling of channel transmission loss processes in semi-arid catchments of southern Africa using the Pitman Model. Proceedings of the International Association of Hydrological Sciences, 0, 378, 17-22.                 | 1.0 | 4         |