Sean A Woznicki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2571381/publications.pdf

Version: 2024-02-01

41 papers 2,277 citations

279701 23 h-index 289141 40 g-index

41 all docs

41 docs citations

41 times ranked

2864 citing authors

#	Article	IF	CITATIONS
1	Climate change and livestock: Impacts, adaptation, and mitigation. Climate Risk Management, 2017, 16, 145-163.	1.5	775
2	Climate change and eastern Africa: a review of impact on major crops. Food and Energy Security, 2015, 4, 110-132.	2.0	360
3	Evaluation of targeting methods for implementation of best management practices in the Saginaw River Watershed. Journal of Environmental Management, 2012, 103, 24-40.	3.8	108
4	Development of a spatially complete floodplain map of the conterminous United States using random forest. Science of the Total Environment, 2019, 647, 942-953.	3.9	99
5	Climate change and irrigation demand: Uncertainty and adaptation. Journal of Hydrology: Regional Studies, 2015, 3, 247-264.	1.0	65
6	Modeling the hydrological significance of wetland restoration scenarios. Journal of Environmental Management, 2014, 133, 121-134.	3.8	61
7	Analysis of best management practice effectiveness and spatiotemporal variability based on different targeting strategies. Hydrological Processes, 2014, 28, 431-445.	1.1	54
8	Assessing Best Management Practice Implementation Strategies under Climate Change Scenarios. Transactions of the ASABE, 2011, 54, 171-190.	1.1	45
9	Modeling the effects of conservation practices on stream health. Science of the Total Environment, 2012, 435-436, 380-391.	3.9	45
10	Large-scale climate change vulnerability assessment of stream health. Ecological Indicators, 2016, 69, 578-594.	2.6	43
11	Changes in eventâ€based streamflow magnitude and timing after suburban development with infiltrationâ€based stormwater management. Hydrological Processes, 2020, 34, 387-403.	1.1	42
12	Sensitivity Analysis of Best Management Practices Under Climate Change Scenarios $<$ sup $>$ 1 $<$ /sup $>$. Journal of the American Water Resources Association, 2012, 48, 90-112.	1.0	40
13	Linking Biological Integrity and Watershed Models to Assess the Impacts of Historical Land Use and Climate Changes on Stream Health. Environmental Management, 2013, 51, 1147-1163.	1.2	34
14	Effectiveness of landscapeâ€based green infrastructure for stormwater management in suburban catchments. Hydrological Processes, 2018, 32, 2346-2361.	1.1	33
15	Development of a socio-ecological environmental justice model for watershed-based management. Journal of Hydrology, 2014, 518, 162-177.	2.3	29
16	Ecohydrological model parameter selection for stream health evaluation. Science of the Total Environment, 2015, 511, 341-353.	3.9	29
17	Assessing uncertainty in best management practice effectiveness under future climate scenarios. Hydrological Processes, 2014, 28, 2550-2566.	1.1	28
18	How much conservation is enough? Defining implementation goals for healthy fish communities in agricultural rivers. Journal of Great Lakes Research, 2016, 42, 1302-1321.	0.8	28

#	Article	IF	CITATIONS
19	Optimization of conservation practice implementation strategies in the context of stream health. Ecological Engineering, 2015, 84, 1-12.	1.6	27
20	Sediment retention by natural landscapes in the conterminous United States. Science of the Total Environment, 2020, 745, 140972.	3.9	27
21	Ecohydrological modeling for large-scale environmental impact assessment. Science of the Total Environment, 2016, 543, 274-286.	3.9	26
22	Spatial and Temporal Variabilities of Sediment Delivery Ratio. Water Resources Management, 2013, 27, 2483-2499.	1.9	25
23	Evaluating the capabilities of watershed-scale models in estimating sediment yield at field-scale. Journal of Environmental Management, 2013, 127, 228-236.	3.8	24
24	Comparison of Four Models (STEPL, PLOAD, L-THIA, and SWAT) in Simulating Sediment, Nitrogen, and Phosphorus Loads and Pollutant Source Areas. Transactions of the ASABE, 2011, 54, 875-890.	1.1	23
25	A coupled hydrodynamic (<scp>HECâ€RAS 2D</scp>) and water quality model (<scp>WASP</scp>) for simulating <scp>floodâ€induced</scp> soil, sediment, and contaminant transport. Journal of Flood Risk Management, 2021, 14, 1-17.	1.6	23
26	Simulating stream health sensitivity to landscape changes due to bioenergy crops expansion. Biomass and Bioenergy, 2013, 58, 198-209.	2.9	21
27	Assessing the significance of wetland restoration scenarios on sediment mitigation plan. Ecological Engineering, 2015, 77, 103-113.	1.6	18
28	Evaluating the impact of field-scale management strategies on sediment transport to the watershed outlet. Journal of Environmental Management, 2013, 128, 735-748.	3.8	16
29	Integrating statistical and hydrological models to identify implementation sites for agricultural conservation practices. Environmental Modelling and Software, 2015, 72, 327-340.	1.9	16
30	Cropland management versus dredging: An economic analysis of reservoir sediment management. Lake and Reservoir Management, 2013, 29, 151-164.	0.4	15
31	Lessons learned from 20 y of monitoring suburban development with distributed stormwater management in Clarksburg, Maryland, USA. Freshwater Science, 2022, 41, 459-476.	0.9	15
32	Regulators' and stakeholders' perspectives in a framework for bioenergy development. Land Use Policy, 2016, 59, 143-153.	2.5	14
33	Optimization of bioenergy crop selection and placement based on a stream health indicator using an evolutionary algorithm. Journal of Environmental Management, 2016, 181, 413-424.	3.8	13
34	Bayesian Regression and Neuro-Fuzzy Methods Reliability Assessment for Estimating Streamflow. Water (Switzerland), 2016, 8, 287.	1.2	12
35	Reducing current and future risks: Using climate change scenarios to test an agricultural conservation framework. Journal of Great Lakes Research, 2017, 43, 59-68.	0.8	12
36	Two-phase approach to improve stream health modeling. Ecological Informatics, 2016, 34, 13-21.	2.3	10

3

#	Article	IF	CITATIONS
37	Applications of computational fluid dynamics in fish and habitat studies. Ecohydrology and Hydrobiology, 2017, 17, 53-62.	1.0	8
38	Quantifying the potential impacts of climate change on irrigation demand, crop yields, and green water scarcity in the New Jersey Coastal Plain. Science of the Total Environment, 2022, 838, 156538.	3.9	7
39	Cost-Effective Targeting for Reducing Soil Erosion in a Large Agricultural Watershed. Journal of Agricultural & Conomics, 2014, 46, 509-526.	0.8	4
40	Multi-site watershed model calibration for evaluating best management practice effectiveness in reducing fecal pollution. Human and Ecological Risk Assessment (HERA), 2020, 26, 2690-2715.	1.7	3
41	Assessing the Impacts of Climate Change on Best Management Practices (BMPs) Implementation Strategies. , 2010, , .		O