

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2571000/publications.pdf Version: 2024-02-01

XINCVILI

#	Article	IF	CITATIONS
1	Synthesis and characterization of PEG-PCL-PEG thermosensitive hydrogel. International Journal of Pharmaceutics, 2009, 365, 89-99.	5.2	319
2	In situ injectable nano-composite hydrogel composed of curcumin, N,O-carboxymethyl chitosan and oxidized alginate for wound healing application. International Journal of Pharmaceutics, 2012, 437, 110-119.	5.2	221
3	A Powerful CD8 ⁺ Tâ€Cell Stimulating Dâ€Tetraâ€Peptide Hydrogel as a Very Promising Vaccine Adjuvant. Advanced Materials, 2017, 29, 1601776.	21.0	198
4	Enzyme atalyzed Formation of Supramolecular Hydrogels as Promising Vaccine Adjuvants. Advanced Functional Materials, 2016, 26, 1822-1829.	14.9	163
5	Diclofenac/biodegradable polymer micelles for ocular applications. Nanoscale, 2012, 4, 4667.	5.6	109
6	Fabrication of a Micellar Supramolecular Hydrogel for Ocular Drug Delivery. Biomacromolecules, 2016, 17, 798-807.	5.4	105
7	Cytotoxicity and biocompatibility evaluation of N,O-carboxymethyl chitosan/oxidized alginate hydrogel for drug delivery application. International Journal of Biological Macromolecules, 2012, 50, 1299-1305.	7.5	94
8	In situ covalently cross-linked PEG hydrogel for ocular drug delivery applications. International Journal of Pharmaceutics, 2014, 470, 151-157.	5.2	93
9	An injectable thermosensitive polymeric hydrogel for sustained release of Avastin® to treat posterior segment disease. International Journal of Pharmaceutics, 2015, 490, 375-383.	5.2	92
10	Peptide-based supramolecular hydrogels for local drug delivery. Advanced Drug Delivery Reviews, 2021, 174, 482-503.	13.7	89
11	The use of cationic MPEC-PCL-g-PEI micelles for co-delivery ofÂMsurvivin T34A gene and doxorubicin. Biomaterials, 2014, 35, 4536-4547.	11.4	87
12	Preparation and characterization of nano-hydroxyapatite/chitosan cross-linking composite membrane intended for tissue engineering. International Journal of Biological Macromolecules, 2012, 50, 43-49.	7.5	68
13	Mucoadhesive dexamethasone-glycol chitosan nanoparticles for ophthalmic drug delivery. International Journal of Pharmaceutics, 2020, 575, 118943.	5.2	68
14	Chitosan grafted methoxy poly(ethylene glycol)-poly(ε-caprolactone) nanosuspension for ocular delivery of hydrophobic diclofenac. Scientific Reports, 2015, 5, 11337.	3.3	66
15	Enhanced cellular uptake and nuclear accumulation of drug-peptide nanomedicines prepared by enzyme-instructed self-assembly. Journal of Controlled Release, 2020, 317, 109-117.	9.9	65
16	Development and evaluation of fast forming nano-composite hydrogel for ocular delivery of diclofenac. International Journal of Pharmaceutics, 2013, 448, 96-100.	5.2	64
17	Calcium ion cross-linking alginate/dexamethasone sodium phosphate hybrid hydrogel for extended drug release. Colloids and Surfaces B: Biointerfaces, 2019, 175, 569-575.	5.0	59
18	Thermosensitive PEG–PCL–PEG (PECE) hydrogel as an <i>in situ</i> gelling system for ocular drug delivery, 2016, 23, 63-68.	5.7	54

Xingyi Li

#	Article	IF	CITATIONS
19	Glycol chitosan/oxidized hyaluronic acid hydrogel film for topical ocular delivery of dexamethasone and levofloxacin. International Journal of Biological Macromolecules, 2021, 167, 659-666.	7.5	52
20	<i>In Vivo</i> Regenerable Cerium Oxide Nanozyme-Loaded pH/H ₂ O ₂ -Responsive Nanovesicle for Tumor-Targeted Photothermal and Photodynamic Therapies. ACS Applied Materials & Interfaces, 2021, 13, 233-244.	8.0	50
21	A covalently crosslinked polysaccharide hydrogel for potential applications in drug delivery and tissue engineering. Journal of Materials Science: Materials in Medicine, 2012, 23, 2857-2865.	3.6	47
22	A Rapid Corneal Healing Microneedle for Efficient Ocular Drug Delivery. Small, 2022, 18, e2104657.	10.0	47
23	Intravitreal injection of rapamycin-loaded polymeric micelles for inhibition of ocular inflammation in rat model. International Journal of Pharmaceutics, 2016, 513, 238-246.	5.2	45
24	Thermosensitive glycol chitosan-based hydrogel as a topical ocular drug delivery system for enhanced ocular bioavailability. International Journal of Pharmaceutics, 2019, 570, 118688.	5.2	45
25	Stimulusâ€Responsive Hydrogel for Ophthalmic Drug Delivery. Macromolecular Bioscience, 2019, 19, e1900001.	4.1	42
26	Combination of dexamethasone and Avastin® by supramolecular hydrogel attenuates the inflammatory corneal neovascularization in rat alkali burn model. Colloids and Surfaces B: Biointerfaces, 2017, 159, 241-250.	5.0	41
27	Calcium ion coordinated dexamethasone supramolecular hydrogel as therapeutic alternative for control of non-infectious uveitis. Acta Biomaterialia, 2017, 61, 157-168.	8.3	38
28	Supramolecular nanofibers of dexamethasone derivatives to form hydrogel for topical ocular drug delivery. Colloids and Surfaces B: Biointerfaces, 2018, 164, 436-443.	5.0	36
29	Supramolecular nanofibers of triamcinolone acetonide for uveitis therapy. Nanoscale, 2014, 6, 14488-14494.	5.6	32
30	Self-assembly of a ibuprofen-peptide conjugate to suppress ocular inflammation. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 185-193.	3.3	32
31	Micelle-solubilized axitinib for ocular administration in anti-neovascularization. International Journal of Pharmaceutics, 2019, 560, 19-26.	5.2	31
32	Preparation and evaluation of teniposide-loaded polymeric micelles for breast cancer therapy. International Journal of Pharmaceutics, 2016, 513, 118-129.	5.2	26
33	Cytocompatible cerium oxide-mediated antioxidative stress in inhibiting ocular inflammation-associated corneal neovascularization. Journal of Materials Chemistry B, 2019, 7, 6759-6769.	5.8	25
34	Tandem Molecular Self-Assembly Selectively Inhibits Lung Cancer Cells by Inducing Endoplasmic Reticulum Stress. Research, 2019, 2019, 4803624.	5.7	24
35	Folic acid as a versatile motif to construct molecular hydrogelators through conjugations with hydrophobic therapeutic agents. Journal of Materials Chemistry, 2012, 22, 21838.	6.7	23
36	Bioinspired self-assembly supramolecular hydrogel for ocular drug delivery. Chinese Chemical Letters, 2021, 32, 3936-3939.	9.0	23

Xingyi Li

#	Article	IF	CITATIONS
37	High drug payload nanoparticles formed from dexamethasone-peptide conjugates for the treatment of endotoxin-induced uveitis in rabbit. International Journal of Nanomedicine, 2019, Volume 14, 591-603.	6.7	22
38	Cationic self-assembled peptide-based molecular hydrogels for extended ocular drug delivery. Acta Biomaterialia, 2021, 131, 162-171.	8.3	21
39	Self-assembled small molecular weight hydrogels of prodrugs. Chinese Chemical Letters, 2017, 28, 1835-1840.	9.0	20
40	Glycosylation-enhanced biocompatibility of the supramolecular hydrogel of an anti-inflammatory drug for topical suppression of inflammation. Acta Biomaterialia, 2018, 73, 275-284.	8.3	20
41	A combination of inhibiting microglia activity and remodeling gut microenvironment suppresses the development and progression of experimental autoimmune uveitis. Biochemical Pharmacology, 2020, 180, 114108.	4.4	20
42	Covalently Cross-Linked Chitosan Hydrogel Sheet for Topical Ophthalmic Delivery of Levofloxacin. Journal of Biomedical Nanotechnology, 2018, 14, 371-378.	1.1	19
43	Self-assembled peptide-based supramolecular hydrogel for ophthalmic drug delivery. RSC Advances, 2016, 6, 76093-76098.	3.6	17
44	Enzyme-instructed self-assembly of peptide-drug conjugates in tear fluids for ocular drug delivery. Journal of Controlled Release, 2022, 344, 261-271.	9.9	17
45	Cationic micelle based vaccine induced potent humoral immune response through enhancing antigen uptake and formation of germinal center. Colloids and Surfaces B: Biointerfaces, 2015, 135, 556-564.	5.0	16
46	Directing the nanoparticle formation by the combination with small molecular assembly and polymeric assembly for topical suppression of ocular inflammation. International Journal of Pharmaceutics, 2018, 551, 223-231.	5.2	16
47	An Overview on Pharmacokinetics, Disposition, and Safety of Nanoparticles in Ocular Applications. Current Drug Metabolism, 2013, 14, 857-862.	1.2	16
48	Multifunctional Supramolecular Filament Hydrogel Boosts Antiâ€Inflammatory Efficacy In Vitro and In Vivo. Advanced Functional Materials, 2022, 32, .	14.9	15
49	Supramolecular hydrogel of non-steroidal anti-inflammatory drugs: preparation, characterization and ocular biocompatibility. RSC Advances, 2016, 6, 62434-62438.	3.6	14
50	Enzymatic formation of curcumin in vitro and in vivo. Nano Research, 2018, 11, 3453-3461.	10.4	14
51	A Facile Strategy to Generate High Drug Payload Celecoxib Micelles for Enhanced Corneal Permeability. Journal of Biomedical Nanotechnology, 2019, 15, 822-829.	1.1	14
52	Sequential drug release of co-assembled supramolecular hydrogel as synergistic therapy against Staphylococcus aureus endophthalmitis. Chemical Engineering Journal, 2022, 427, 130979.	12.7	14
53	Prevention of corneal neovascularization by subconjunctival injection of avastin® loaded thermosensitive hydrogels in rabbit model. International Journal of Pharmaceutics, 2018, 552, 164-170.	5.2	13
54	Preparation and characterization of chitosan nanopores membranes for the transport of drugs. International Journal of Pharmaceutics, 2011, 420, 371-377.	5.2	12

Xingyi Li

#	Article	IF	CITATIONS
55	Injectable micellar supramolecular hydrogel for delivery of hydrophobic anticancer drugs. Journal of Materials Science: Materials in Medicine, 2016, 27, 73.	3.6	11
56	Cation instructed steroidal prodrug supramolecular hydrogel. Journal of Colloid and Interface Science, 2018, 528, 10-17.	9.4	10
57	Preparation and characterization of a pterostilbene-peptide prodrug nanomedicine for the management of dry eye. International Journal of Pharmaceutics, 2020, 588, 119683.	5.2	10
58	Penetrating-peptide-mediated non-invasive Axitinib delivery for anti-neovascularisation. Journal of Controlled Release, 2022, 347, 449-459.	9.9	10
59	Drug-peptide supramolecular hydrogel boosting transcorneal permeability and pharmacological activity via ligand-receptor interaction. Bioactive Materials, 2022, 10, 420-429.	15.6	9
60	Visual tracing of diffusion and biodistribution for amphiphilic cationic nanoparticles using photoacoustic imaging after ex vivo intravitreal injections. International Journal of Nanomedicine, 2016, Volume 11, 5079-5086.	6.7	8
61	Effects of Terminal Motif on the Self-Assembly of Dexamethasone Derivatives. Frontiers in Chemistry, 2020, 8, 9.	3.6	8
62	Construction of triblock copolymer-gold nanorod composites for fluorescence resonance energy transfer via pH-sensitive allosteric. Chinese Chemical Letters, 2020, 31, 3131-3134.	9.0	4
63	Ganciclovir attenuates the onset and progression of experimental autoimmune uveitis by inhibiting infiltration of Th17 and inflammatory cells into the retina. Biochemical Pharmacology, 2022, 197, 114917.	4.4	4
64	A Novel Indomethacin-Tripeptide Hydrogel for Inhibiting Ocular Inflammation. Journal of Biomedical Nanotechnology, 2021, 17, 1417-1425.	1.1	3
65	Single subcutaneous injection of the minocycline nanocomposite-loaded thermosensitive hydrogel for the effective attenuation of experimental autoimmune uveitis. International Journal of Pharmaceutics, 2022, 622, 121836.	5.2	3
66	Enhancement of photothermal toxicity and lung targeting delivery of Au nanorods via heparin-based nanogel. RSC Advances, 2015, 5, 22076-22079.	3.6	2