Larisa Vedmid'

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2570421/publications.pdf Version: 2024-02-01

LARISA VEDMID'

#	Article	IF	CITATIONS
1	Structural and Magnetic Characteristics of Gadolinium Manganite Modified with Barium Gd0.9Ba0.1MnO3. Journal of Superconductivity and Novel Magnetism, 2022, 35, 1141-1150.	1.8	1
2	Influence of strontium concentration on the structure and magnetic properties of solid solutions Nd1-xSrxMnO3 (x = 0; 0.15; 0.25; 0.50). Journal of Solid State Chemistry, 2022, , 123244.	2.9	0
3	Joint Metallothermic Reduction of Titanium and Rare Refractory Metals of Group V. Russian Journal of Non-Ferrous Metals, 2021, 62, 190-196.	0.6	2
4	Effect of Barium Concentration on the Structural Properties and Electrical Conductivity of Pr1 – xBaxMnO3 (x = 0, 0.15, 0.25) Solid Solutions. Inorganic Materials, 2021, 57, 392-398.	0.8	3
5	Structure and Electrical Conductivity of the Perovskites Pr1–ÂxSrxMnO3 (x = 0, 0.15, or 0.25). Physics of the Solid State, 2021, 63, 660-665.	0.6	2
6	Thermal Stability of Nd1–xAxMnO3 (x = 0, 0.15; A = Ba, Sr). Russian Journal of Physical Chemistry A, 2020, 94, 1741-1746.	0.6	5
7	Mechanism of Ion-Diffusion Solid-Phase Reduction of Iron Oxides of Technogenic Origin in the Presence of the Liquid Phase and without it. Metals, 2020, 10, 1564.	2.3	9
8	Influence of temperature and oxygen pressure on the stability of barium or strontium doped neodymium manganites. Processing and Application of Ceramics, 2020, 14, 203-209.	0.8	5
9	Synthesis Conditions and Structure of Layered Manganites Ln2BaMn2O7–ÂÎ′(Ln = Pr, Nd). Doklady Chemistry, 2020, 493, 121-125.	0.9	Ο
10	Effect of Oxygen Nonstoichiometry on Phase Separation, Structure, and Magnetic Properties of the Complex Oxide NdSr2Mn2O7. Inorganic Materials: Applied Research, 2020, 11, 1065-1070.	0.5	0
11	Structure and Thermal Properties of TmFe2O4 at Various Temperatures and Oxygen Pressures. Doklady Physical Chemistry, 2019, 484, 8-11.	0.9	1
12	Aluminothermic Reduction of Titanium in the Presence of Tantalum and Vanadium Oxides. Russian Metallurgy (Metally), 2019, 2019, 812-815.	0.5	0
13	Interaction of Al-Ti-Nb (Ta) alloys with air oxygen. AIP Conference Proceedings, 2019, , .	0.4	Ο
14	Stability Analysis of YbFe2O4 under Low Partial Oxygen Pressure. Doklady Physical Chemistry, 2018, 478, 42-46.	0.9	3
15	Experimental Evaluation of the Interaction of Titanium and Gadolinium Oxides with Aluminum. Russian Metallurgy (Metally), 2018, 2018, 787-791.	0.5	1
16	Evolution of Phase Formation during the Aluminothermic Reduction of Titanium and Zirconium from Oxides. Russian Metallurgy (Metally), 2018, 2018, 733-736.	0.5	8
17	Thermal Properties of Precursors for a Hard Magnetic Fe–Cr–Co Material. Russian Metallurgy (Metally), 2018, 2018, 792-794.	0.5	1
18	Iron–Chromium Precursors for Hard-Magnetic Fe–Cr–Co Alloys. Russian Metallurgy (Metally), 2018, 2018, 114-117.	0.5	3

LARISA VEDMID'

#	Article	IF	CITATIONS
19	A dynamic way of studying heterogeneous equilibria. Russian Journal of Physical Chemistry A, 2017, 91, 1388-1391.	0.6	4
20	Effect of oxygen pressure on the thermochemical properties of PrMnO3. Bulletin of the Russian Academy of Sciences: Physics, 2016, 80, 508-511.	0.6	0
21	Phase diagram of the Pr–Mn–O system in composition–temperature–oxygen pressure coordinates. Russian Journal of Physical Chemistry A, 2016, 90, 977-982.	0.6	4
22	Phase transformations in the Nd-Mn-O system. Inorganic Materials, 2015, 51, 288-293.	0.8	4
23	Thermal stability of the GdMnO3 compound. Glass Physics and Chemistry, 2015, 41, 244-246.	0.7	2
24	Sequence of phase transitions in the thermal dissociation and hydrogen reduction of YMn2O5 Compound. Bulletin of the Russian Academy of Sciences: Physics, 2014, 78, 73-75.	0.6	0
25	Effect of structural transitions on the thermodynamic properties of NdMnO3 compound. Bulletin of the Russian Academy of Sciences: Physics, 2014, 78, 296-298.	0.6	5
26	Evolution of phase equilibrium states in the Y-Mn-O system in the thermal dissociation of the compound YMn2O5. Russian Journal of Inorganic Chemistry, 2014, 59, 519-523.	1.3	2
27	Phase diagrams and ranges of cation homogeneity for systems composed of oxides of manganese and 4f rare earth elements (La57-Lu71), oxides of manganese and Sc21, and oxides of manganese and Y39. Bulletin of the Russian Academy of Sciences: Physics, 2013, 77, 1112-1116.	0.6	1
28	Sequence of phase transformations in the Gd-Mn-O system. Bulletin of the Russian Academy of Sciences: Physics, 2012, 76, 751-753.	0.6	0
29	Effect of oxygen pressure on phase equilibria in the Eu-Mn-O system. Russian Journal of Physical Chemistry A, 2012, 86, 345-348.	0.6	5
30	Thermal stability of EuMnO3 compound. Bulletin of the Russian Academy of Sciences: Physics, 2011, 75, 1131-1132.	0.6	2
31	Thermal stability of HoMnO3. Bulletin of the Russian Academy of Sciences: Physics, 2010, 74, 617-618.	0.6	0
32	Heterogeneous equilibria in a Ho-Mn-O system. Bulletin of the Russian Academy of Sciences: Physics, 2010, 74, 1152-1154.	0.6	0
33	Thermal dissociation of the ErMn2O5 compound. Bulletin of the Russian Academy of Sciences: Physics, 2009, 73, 939-941.	0.6	0
34	The sequence of equilibrium phase states of the Tb-Mn-O system in the thermal dissociation of the TbMn2O5 compound. Russian Journal of Physical Chemistry A, 2009, 83, 575-577.	0.6	1
35	Evolution of phase equilibrium states in the Tm-Mn-O system at thermal dissociation of the TmMn2O5 compound. Bulletin of the Russian Academy of Sciences: Physics, 2008, 72, 1141-1144.	0.6	0
36	Representation of phase equilibria in ternary oxide systems. Bulletin of the Russian Academy of Sciences: Physics, 2007, 71, 1183-1186.	0.6	2

#	Article	IF	CITATIONS
37	The influence of oxygen pressure on phase equilibria in the Ln-Mn-O (Ln = Sm, Tb, Dy, Yb, and Lu) systems. Russian Journal of Physical Chemistry A, 2006, 80, 1714-1716.	0.6	3