Larisa Vedmid'

List of Publications by Year in descending order

Source: https:/|exaly.com/author-pdf/2570421/publications.pdf
Version: 2024-02-01

Mechanism of lon-Diffusion Solid-Phase Reduction of Iron Oxides of Technogenic Origin in the
Presence of the Liquid Phase and without it. Metals, 2020, 10, 1564.

Evolution of Phase Formation during the Aluminothermic Reduction of Titanium and Zirconium from Oxides. Russian Metallurgy (Metally), 2018, 2018, 733-736.

Effect of oxygen pressure on phase equilibria in the Eu-Mn-O system. Russian Journal of Physical Chemistry A, 2012, 86, 345-348.

Effect of structural transitions on the thermodynamic properties of NdMnO 3 compound. Bulletin of the Russian Academy of Sciences: Physics, 2014, 78, 296-298.

Thermal Stability of Nd1â€" $x \mathrm{AxMnO} 3(x=0,0.15 ; \mathrm{A}=\mathrm{Ba}, \mathrm{Sr})$. Russian Journal of Physical Chemistry A , 2020, 94, 1741-1746.

Influence of temperature and oxygen pressure on the stability of barium or strontium doped neodymium manganites. Processing and Application of Ceramics, 2020, 14, 203-209.
$0.8 \quad 5$
$7 \quad$ Phase transformations in the Nd-Mn-O system. Inorganic Materials, 2015, 51, 288-293.
0.8

4

8 Phase diagram of the Prâ $€$ "Mnâ $€$ "O system in compositionâ $€$ "temperatureâ€"oxygen pressure coordinates.
8 Russian Journal of Physical Chemistry A, 2016, 90, 977-982.
0.6

4

9 A dynamic way of studying heterogeneous equilibria. Russian Journal of Physical Chemistry A, 2017, 91,
$9 \quad 1388-1391$.

The influence of oxygen pressure on phase equilibria in the $\mathrm{Ln}-\mathrm{Mn}-\mathrm{O}(\mathrm{Ln}=\mathrm{Sm}, \mathrm{Tb}, \mathrm{Dy}, \mathrm{Yb}$, and Lu$)$ systems. Russian Journal of Physical Chemistry A, 2006, 80, 1714-1716.
0.6

3
Stability Analysis of YbFe2O4 under Low Partial Oxygen Pressure. Doklady Physical Chemistry, 2018,
$478,42-46$. 478, 42-46.
$0.9 \quad 3$

Ironâ€"Chromium Precursors for Hard-Magnetic Feâ€"Crâ€"Co Alloys. Russian Metallurgy (Metally), 2018, 2018, 114-117.
0.5

Effect of Barium Concentration on the Structural Properties and Electrical Conductivity of Prl â€"
0.8

3 xBaxMnO3 ($x=0,0.15,0.25$) Solid Solutions. Inorganic Materials, 2021, 57, 392-398.

Representation of phase equilibria in ternary oxide systems. Bulletin of the Russian Academy of Sciences: Physics, 2007, 71, 1183-1186.

Thermal stability of EuMnO3 compound. Bulletin of the Russian Academy of Sciences: Physics, 2011, 75, 1131-1132.

Evolution of phase equilibrium states in the $\mathrm{Y}-\mathrm{Mn}-\mathrm{O}$ system in the thermal dissociation of the compound YMn2O5. Russian Journal of Inorganic Chemistry, 2014, 59, 519-523.
19
20

> Structure and Electrical Conductivity of the Perovskites Pr1 $\hat{A} a ̂ €^{" A} \hat{A} x \operatorname{SrxMnO} 3(x=0,0.15$, or 0.25$)$. Physics of the Solid State, $2021,63,660-665$.
$0.6 \quad 2$

The sequence of equilibrium phase states of the Tb-Mn-O system in the thermal dissociation of the TbMn2O5 compound. Russian Journal of Physical Chemistry A, 2009, 83, 575-577.
Phase diagrams and ranges of cation homogeneity for systems composed of oxides of manganese and
21 4f rare earth elements (La57-Lu71), oxides of manganese and Sc 21 , and oxides of manganese and Y39.
$0.6 \quad 1$
Bulletin of the Russian Academy of Sciences: Physics, 2013, 77, 1112-1116.

22 Experimental Evaluation of the Interaction of Titanium and Gadolinium Oxides with Aluminum.
Russian Metallurgy (Metally), 2018, 2018, 787-791.
$0.5 \quad 1$

23 Thermal Properties of Precursors for a Hard Magnetic Feâ€ "Crâ€"Co Material. Russian Metallurgy
(Metally), 2018, 2018, 792-794.
$0.5 \quad 1$

24 Structure and Thermal Properties of TmFe2O4 at Various Temperatures and Oxygen Pressures. Doklady
$0.9 \quad 1$
Physical Chemistry, 2019, 484, 8-11.

Structural and Magnetic Characteristics of Gadolinium Manganite Modified with Barium
GdO.9BaO.1MnO3. Journal of Superconductivity and Novel Magnetism, 2022, 35, 1141-1150.
1.8

1

26 Evolution of phase equilibrium states in the $\mathrm{Tm}-\mathrm{Mn}-\mathrm{O}$ system at thermal dissociation of the TmMn 2 O 5
compound. Bulletin of the Russian Academy of Sciences: Physics, 2008, 72, 1141-1144.
0.6

0

> Thermal dissociation of the ErMn2O5 compound. Bulletin of the Russian Academy of Sciences: Physics,
> $272009,73,939-941$.
0.6

0

28 Thermal stability of HoMnO3. Bulletin of the Russian Academy of Sciences: Physics, 2010, 74, 617-618.

0.6

0

$$
\begin{aligned}
& 29 \text { Heterogeneous equilibria in a Ho-Mn-O system. Bulletin of the Russian Academy of Sciences: Physics, } \\
& 2010,74,1152-1154 \text {. }
\end{aligned}
$$

$0.6 \quad 0$

Sequence of phase transformations in the Gd-Mn-O system. Bulletin of the Russian Academy of
$30 \quad$ Sciences: Physics, 2012, 76, 751-753.
0.6

0

Sequence of phase transitions in the thermal dissociation and hydrogen reduction of YMn2O5
Compound. Bulletin of the Russian Academy of Sciences: Physics, 2014, 78, 73-75.
0.6

0

Effect of oxygen pressure on the thermochemical properties of PrMnO3. Bulletin of the Russian
0.6

0

Synthesis Conditions and Structure of Layered Manganites Ln2BaMn2O7ÂÂ€ "ÂAl"(Ln = Pr, Nd). Doklady

