
Xuzhen Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2570208/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Engineering hollow polyhedrons structured from carbon-coated CoSe ₂ nanospheres bridged by CNTs with boosted sodium storage performance. Journal of Materials Chemistry A, 2017, 5, 13591-13600.	5.2	225
2	A Topâ€Down Strategy toward 3D Carbon Nanosheet Frameworks Decorated with Hollow Nanostructures for Superior Lithium Storage. Advanced Functional Materials, 2016, 26, 7590-7598.	7.8	201
3	Highly Stretchable and Ultrasensitive Strain Sensor Based on Reduced Graphene Oxide Microtubes–Elastomer Composite. ACS Applied Materials & Interfaces, 2015, 7, 27432-27439.	4.0	189
4	Carbon-Stabilized Interlayer-Expanded Few-Layer MoSe ₂ Nanosheets for Sodium Ion Batteries with Enhanced Rate Capability and Cycling Performance. ACS Applied Materials & Interfaces, 2016, 8, 32324-32332.	4.0	128
5	Interlayer expanded MoS 2 enabled by edge effect of graphene nanoribbons for high performance lithium and sodium ion batteries. Carbon, 2016, 109, 461-471.	5.4	114
6	Flexible Paper-like Free-Standing Electrodes by Anchoring Ultrafine SnS ₂ Nanocrystals on Graphene Nanoribbons for High-Performance Sodium Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 15484-15491.	4.0	102
7	Cellular carbon-wrapped FeSe ₂ nanocavities with ultrathin walls and multiple rooms for ion diffusion-confined ultrafast sodium storage. Journal of Materials Chemistry A, 2019, 7, 4469-4479.	5.2	101
8	Low temperature plasma synthesis of mesoporous Fe3O4 nanorods grafted on reduced graphene oxide for high performance lithium storage. Nanoscale, 2014, 6, 2286.	2.8	97
9	A novel robust adsorbent for efficient oil/water separation: Magnetic carbon nanospheres/graphene composite aerogel. Journal of Hazardous Materials, 2020, 392, 122499.	6.5	92
10	Nanopore-confined g-C ₃ N ₄ nanodots inÂN, S co-doped hollow porous carbon with boosted capacity for lithium–sulfur batteries. Journal of Materials Chemistry A, 2018, 6, 7133-7141.	5.2	80
11	Highly stable lithium–sulfur batteries based on p–n heterojunctions embedded on hollow sheath carbon propelling polysulfides conversion. Journal of Materials Chemistry A, 2019, 7, 9230-9240.	5.2	79
12	Cobalt nitride nanoparticles embedded in porous carbon nanosheet arrays propelling polysulfides conversion for highly stable lithium–sulfur batteries. Energy Storage Materials, 2019, 21, 210-218.	9.5	79
13	Nitrogen-doped mesoporous carbon nanosheets derived from metal-organic frameworks in a molten salt medium for efficient desulfurization. Carbon, 2017, 117, 376-382.	5.4	78
14	Nitrogen-doped graphene nanoribbons for high-performance lithium ion batteries. Journal of Materials Chemistry A, 2014, 2, 16832-16835.	5.2	75
15	Two-dimensional graphene-like N, Co-codoped carbon nanosheets derived from ZIF-67 polyhedrons for efficient oxygen reduction reactions. Chemical Communications, 2017, 53, 7840-7843.	2.2	70
16	Nitrogen-doped carbon nanotubes decorated with cobalt nanoparticles derived from zeolitic imidazolate framework-67 for highly efficient oxygen reduction reaction electrocatalysis. Carbon, 2018, 132, 580-588.	5.4	68
17	Microwave-assisted synthesis of MoS2/graphene nanocomposites for efficient hydrodesulfurization. Fuel, 2014, 119, 163-169.	3.4	66
18	3D Carbon Frameworks for Ultrafast Charge/Discharge Rate Supercapacitors with High Energy-Power Density. Nano-Micro Letters, 2021, 13, 8.	14.4	64

XUZHEN WANG

#	Article	IF	CITATIONS
19	Molten salt synthesis of nitrogen-doped porous carbons for hydrogen sulfide adsorptive removal. Carbon, 2015, 95, 852-860.	5.4	62
20	Low-temperature plasma-assisted preparation of graphene supported palladium nanoparticles with high hydrodesulfurization activity. Journal of Materials Chemistry, 2012, 22, 14363.	6.7	61
21	Nitrogen-doped hierarchical porous carbon derived from metal–organic aerogel for high performance lithium–sulfur batteries. Journal of Energy Chemistry, 2017, 26, 1282-1290.	7.1	56
22	Shape-Control and Characterization of Magnetite Prepared via a One-Step Solvothermal Route. Crystal Growth and Design, 2010, 10, 2863-2869.	1.4	53
23	Multifunctional nitrogen-doped graphene nanoribbon aerogels for superior lithium storage and cell culture. Nanoscale, 2016, 8, 2159-2167.	2.8	50
24	Self-assembled sulfur/reduced graphene oxide nanoribbon paper as a free-standing electrode for high performance lithium–sulfur batteries. Chemical Communications, 2016, 52, 12825-12828.	2.2	39
25	Novel hydrodesulfurization nano-catalysts derived from Co3O4 nanocrystals with different shapes. Catalysis Today, 2011, 175, 509-514.	2.2	32
26	Highly Crystalized Co ₂ Mo ₃ O ₈ Hexagonal Nanoplates Interconnected by Coal-Derived Carbon via the Molten-Salt-Assisted Method for Competitive Li-Ion Battery Anodes. ACS Applied Materials & Interfaces, 2019, 11, 7006-7013.	4.0	32
27	Nitrogen-rich hierarchical porous carbon nanofibers for selective oxidation of hydrogen sulfide. Fuel Processing Technology, 2019, 191, 121-128.	3.7	32
28	Designed synthesis of cobalt nanoparticles embedded carbon nanocages as bifunctional electrocatalysts for oxygen evolution and reduction. Carbon, 2019, 144, 492-499.	5.4	31
29	Rational design of metal oxide hollow nanostructures decorated carbon nanosheets for superior lithium storage. Journal of Materials Chemistry A, 2016, 4, 17718-17725.	5.2	30
30	Synthesis of metallic Ni-Co/graphene catalysts with enhanced hydrodesulfurization activity via a low-temperature plasma approach. Catalysis Today, 2015, 256, 203-208.	2.2	27
31	Ni@Ni ₃ N Embedded on Three-Dimensional Carbon Nanosheets for High-Performance Lithium/Sodium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2021, 13, 48536-48545.	4.0	23
32	NiCo (oxy)selenide electrocatalysts <i>via</i> anionic regulation for high-performance lithium–sulfur batteries. Journal of Materials Chemistry A, 2022, 10, 5410-5419.	5.2	22
33	Block copolymer-guided fabrication of shuttle-like polyaniline nanoflowers with radiating whiskers for application in supercapacitors. RSC Advances, 2015, 5, 1016-1023.	1.7	21
34	Tailoring of three-dimensional carbon nanotube architectures by coupling capillarity-induced assembly with multiple CVD growth. Journal of Materials Chemistry, 2011, 21, 5967.	6.7	19
35	Layer-dependent catalysis of MoS ₂ /graphene nanoribbon composites for efficient hydrodesulfurization. Catalysis Science and Technology, 2017, 7, 693-702.	2.1	18
36	Preparation of nitrogen-doped hollow carbon nanosphere/graphene composite aerogel for efficient removal of quinoline from wastewater. Journal of Hazardous Materials, 2021, 417, 126160.	6.5	17

XUZHEN WANG

#	Article	IF	CITATIONS
37	Solar-driven simultaneous desalination and power generation enabled by graphene oxide nanoribbon papers. Journal of Materials Chemistry A, 2022, 10, 9184-9194.	5.2	17
38	Rational-design heteroatom-doped cathode and ion modulation layer modified Zn anode for ultrafast zinc-ion hybrid capacitors with simultaneous high power and energy densities. Journal of Power Sources, 2022, 536, 231484.	4.0	17
39	Integration of Desulfurization and Lithium–Sulfur Batteries Enabled by Aminoâ€Functionalized Porous Carbon Nanofibers. Energy and Environmental Materials, 2023, 6, .	7.3	16
40	Balanced kinetics between electrodes by carbon cloth@ZIF-8 for high rate performance zinc-ion hybrid capacitors. Chemical Communications, 2021, 57, 8778-8781.	2.2	14
41	Synthesis of 3D Flowerâ€like Nanocomposites of Nitrogenâ€Doped Carbon Nanosheets Embedded with Hollow Cobalt(II,III) Oxide Nanospheres for Lithium Storage. ChemElectroChem, 2017, 4, 102-108.	1.7	13
42	DBD plasma-tuned functionalization of edge-enriched graphene nanoribbons for high performance supercapacitors. Electrochimica Acta, 2020, 337, 135741.	2.6	13
43	A facile soft-template synthesis of nitrogen dopedÂmesoporous carbons for hydrogen sulfide removal. Adsorption, 2016, 22, 1075-1082.	1.4	11
44	Fabrication, magnetic properties and self-assembly of hierarchical crystalline hexapod magnetites. RSC Advances, 2012, 2, 4329.	1.7	10
45	Fabrication of Supercapacitors using Carbon Microspheres Synthesized from Resorcinol–Formaldehyde Resin. Energy Technology, 2013, 1, 332-337.	1.8	8
46	C@Fe ₃ O ₄ nanoparticles anchored on carbon nanotubes with enhanced reversible lithium storage. CrystEngComm, 2020, 22, 2429-2433.	1.3	4
47	Facile one-step synthesis of highly graphitized hierarchical porous carbon nanosheets with large surface area and high capacity for lithium storage. RSC Advances, 2016, 6, 51146-51152.	1.7	2