Padmaja R Sankaridurg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/256988/publications.pdf Version: 2024-02-01

		117571	64755
121	8,518	34	79
papers	citations	h-index	g-index
123	123	123	4259
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Normative data and percentile curves for axial length and axial length/corneal curvature in Chinese children and adolescents aged 4–18 years. British Journal of Ophthalmology, 2023, 107, 167-175.	2.1	27
2	Prevalence and Patterns of Refractive Errors in Children and Young Adults in an Urban Region in South India: the Hyderabad Eye Study. Ophthalmic Epidemiology, 2023, 30, 27-37.	0.8	4
3	Establishing a method to estimate the effect of antimyopia management options on lifetime cost of myopia. British Journal of Ophthalmology, 2023, 107, 1043-1050.	2.1	8
4	Accelerated loss of crystalline lens power initiating from emmetropia among young school children: a 2â€year longitudinal study. Acta Ophthalmologica, 2022, 100, .	0.6	9
5	Choroidal thickness predicts progression of myopic maculopathy in high myopes: a 2-year longitudinal study. British Journal of Ophthalmology, 2021, 105, 1744-1750.	2.1	18
6	Highlights from the 2019 International Myopia Summit on â€~controversies in myopia'. British Journal of Ophthalmology, 2021, 105, 1196-1202.	2.1	11
7	Progression of diffuse chorioretinal atrophy among patients with high myopia: a 4-year follow-up study. British Journal of Ophthalmology, 2021, 105, 989-994.	2.1	5
8	Exploring non-adherence to contact lens wear schedule: Subjective assessments and patient related factors in children wearing single vision and myopia control contact lenses. Contact Lens and Anterior Eye, 2021, 44, 94-101.	0.8	6
9	Refractive Error and School Eye Health. , 2021, , 145-168.		0
10	Distribution of intraocular pressure and related risk factors in a highly myopic Chinese population: an observational, cross-sectional study. Australasian journal of optometry, The, 2021, 104, 767-772.	0.6	2
11	Refractive error, axial length, environmental and hereditary factors associated with myopia in Swedish children. Australasian journal of optometry, The, 2021, 104, 595-601.	0.6	27
12	IMI 2021 Yearly Digest. , 2021, 62, 7.		36
13	IMI Risk Factors for Myopia. , 2021, 62, 3.		143
14	IMI 2021 Reports and Digest – Reflections on the Implications for Clinical Practice. , 2021, 62, 1.		9
15	IMI Impact of Myopia. , 2021, 62, 2.		132
16	BCLA CLEAR – Contact lens technologies of the future. Contact Lens and Anterior Eye, 2021, 44, 398-430.	0.8	47
17	IMI Prevention of Myopia and Its Progression. , 2021, 62, 6.		136
18	CHARACTERISTICS OF PERIPAPILLARY INTRACHOROIDAL CAVITATION IN HIGHLY MYOPIC EYES. Retina, 2021, 41, 1057-1062.	1.0	4

#	Article	IF	CITATIONS
19	A Meta-Analysis Assessing Change in Pupillary Diameter, Accommodative Amplitude, and Efficacy of Atropine for Myopia Control. Asia-Pacific Journal of Ophthalmology, 2021, 10, 450-460.	1.3	11
20	Prevalence of myopia and high myopia, and the association with education: Shanghai Child and Adolescent Large-scale Eye Study (SCALE): a cross-sectional study. BMJ Open, 2021, 11, e048450.	0.8	21
21	Peripheral eye length measurement techniques: a review. Australasian journal of optometry, The, 2020, 103, 138-147.	0.6	7
22	DIFFUSE CHORIORETINAL ATROPHY IN CHINESE HIGH MYOPIA. Retina, 2020, 40, 241-248.	1.0	12
23	Sleeping late is a risk factor for myopia development amongst school-aged children in China. Scientific Reports, 2020, 10, 17194.	1.6	39
24	Eccentricity-dependent effects of simultaneous competing defocus on emmetropization in infant rhesus monkeys. Vision Research, 2020, 177, 32-40.	0.7	24
25	Myopia. Nature Reviews Disease Primers, 2020, 6, 99.	18.1	259
26	Visual impairment in highly myopic eyes: The <scp>ZOCâ€BHVI</scp> High Myopia Cohort Study. Clinical and Experimental Ophthalmology, 2020, 48, 783-792.	1.3	4
27	Posterior segment conditions associated with myopia and high myopia. Australasian journal of optometry, The, 2020, 103, 756-765.	0.6	10
28	Review: Myopia control strategies recommendations from the 2018 WHO/IAPB/BHVI Meeting on Myopia. British Journal of Ophthalmology, 2020, 104, bjophthalmol-2019-315575.	2.1	59
29	Progression and Longitudinal Biometric Changes in Highly Myopic Eyes. , 2020, 61, 34.		10
30	Automated Grading of Refractive Error from Fundus Images using Deep Learning. , 2020, , .		0
31	Tessellated fundus appearance and its association with myopic refractive error. Australasian journal of optometry, The, 2019, 102, 378-384.	0.6	12
32	Discrimination of indoor versus outdoor environmental state with machine learning algorithms in myopia observational studies. Journal of Translational Medicine, 2019, 17, 314.	1.8	11
33	Myopia control with novel central and peripheral plus contact lenses and extended depth of focus contact lenses: 2Âyear results from a randomised clinical trial. Ophthalmic and Physiological Optics, 2019, 39, 294-307.	1.0	95
34	Progression of Myopic Maculopathy in Highly Myopic Chinese Eyes. , 2019, 60, 1096.		29
35	IMI – Interventions for Controlling Myopia Onset and Progression Report. , 2019, 60, M106.		230

#	Article	IF	CITATIONS
37	IMI – Myopia Control Reports Overview and Introduction. , 2019, 60, M1.		106
38	Subjective wearing experience and discontinuation rates with novel, extended depth of focus (EDOF), myopia management lenses. Contact Lens and Anterior Eye, 2019, 42, e31-e32.	0.8	0
39	Controlling Progression of Myopia: Optical and Pharmaceutical Strategies. Asia-Pacific Journal of Ophthalmology, 2019, 7, 405-414.	1.3	16
40	Shanghai Time Outside to Reduce Myopia trial: design and baseline data. Clinical and Experimental Ophthalmology, 2019, 47, 171-178.	1.3	26
41	Potential Lost Productivity Resulting from the Global Burden of Myopia. Ophthalmology, 2019, 126, 338-346.	2.5	231
42	The Lowdown on Low-Concentration Atropine for Myopia Progression. Ophthalmology, 2019, 126, 125-126.	2.5	16
43	Who is at risk of myopia?. Community Eye Health Journal, 2019, 32, 16.	0.4	Ο
44	Can myopia be prevented?. Community Eye Health Journal, 2019, 32, 10.	0.4	0
45	Advocacy to reduce the risk of myopia. Community Eye Health Journal, 2019, 32, 12.	0.4	1
46	A Review of Myopia Control with Atropine. Journal of Ocular Pharmacology and Therapeutics, 2018, 34, 374-379.	0.6	41
47	Global prevalence of visual impairment associated with myopic macular degeneration and temporal trends from 2000 through 2050: systematic review, meta-analysis and modelling. British Journal of Ophthalmology, 2018, 102, 855-862.	2.1	198
48	Optic Disc Features in Highly Myopic Eyes: The ZOC-BHVI High Myopia Cohort Study. Optometry and Vision Science, 2018, 95, 318-322.	0.6	17
49	Reduced vision in highly myopic eyes without ocular pathology: the ZOCâ€BHVI high myopia study. Australasian journal of optometry, The, 2018, 101, 77-83.	0.6	8
50	Design and methodology of the Shanghai child and adolescent largeâ€scale eye study (SCALE). Clinical and Experimental Ophthalmology, 2018, 46, 329-338.	1.3	16
51	Myopia Control. , 2018, , 306-313.e2.		0
52	Methodology of the ZOC-BHVI High Myopia Cohort Study: The Onset and Progression of Myopic Pathologies and Associated Risk Factors in Highly Myopic Chinese. Ophthalmic Epidemiology, 2018, 25, 31-38.	0.8	17
53	The Relationship between Progression in Axial Length/Corneal Radius of Curvature Ratio and Spherical Equivalent Refractive Error in Myopia. Optometry and Vision Science, 2018, 95, 921-929.	0.6	33
54	Profile of off-axis higher order aberrations and its variation with time among various refractive error groups. Vision Research, 2018, 153, 111-123.	0.7	10

#	Article	IF	CITATIONS
55	Distribution and Severity of Myopic Maculopathy Among Highly Myopic Eyes. , 2018, 59, 4880.		46
56	Time spent in outdoor activities in relation to myopia prevention and control: a metaâ€analysis and systematic review. Acta Ophthalmologica, 2017, 95, 551-566.	0.6	344
57	Reply. Ophthalmology, 2017, 124, e25.	2.5	0
58	Contact lenses to slow progression of myopia. Australasian journal of optometry, The, 2017, 100, 432-437.	0.6	51
59	Comparison of noncycloplegic and cycloplegic autorefraction in categorizing refractive error data in children. Acta Ophthalmologica, 2017, 95, e633-e640.	0.6	67
60	Effect of Salicylic Acid on the Membrane Proteome and Virulence of <i>Pseudomonas aeruginosa</i> . , 2016, 57, 1213.		20
61	Age-Specific Prevalence of Visual Impairment and Refractive Error in Children Aged 3–10 Years in Shanghai, China. , 2016, 57, 6188.		115
62	The Effects of the Relative Strength of Simultaneous Competing Defocus Signals on Emmetropization in Infant Rhesus Monkeys. , 2016, 57, 3949.		31
63	Global Prevalence of Myopia and High Myopia and Temporal Trends from 2000 through 2050. Ophthalmology, 2016, 123, 1036-1042.	2.5	2,684
64	A less myopic future: what are the prospects?. Australasian journal of optometry, The, 2015, 98, 494-496.	0.6	3
65	Myopia: a growing global problem with sight-threatening complications. Community Eye Health Journal, 2015, 28, 35.	0.4	31
66	Myopia, an underrated global challenge to vision: where the current data takes us on myopia control. Eye, 2014, 28, 142-146.	1.1	179
67	Influence of Contact Lens Power Profile on Peripheral Refractive Error. Optometry and Vision Science, 2014, 91, 642-649.	0.6	10
68	Practical applications to modify and control the development of ametropia. Eye, 2014, 28, 134-141.	1.1	63
69	Influence of higher order aberrations and retinal image quality in myopisation of emmetropic eyes. Vision Research, 2014, 105, 233-243.	0.7	24
70	LV Prasad Eye Institute Glaucoma Epidemiology and Molecular Genetic Study (LVPEI- GLEAMS). Report 1: Study Design and Research Methodology. Ophthalmic Epidemiology, 2013, 20, 188-195.	0.8	7
71	Agreement of glaucoma specialists and experienced optometrists in gonioscopy and optic disc evaluation. Journal of Optometry, 2013, 6, 212-218.	0.7	9
72	Adverse Events during 2 Years of Daily Wear of Silicone Hydrogels in Children. Optometry and Vision Science, 2013, 90, 961-969.	0.6	30

#	Article	IF	CITATIONS
73	The Future of Silicone Hydrogels. Eye and Contact Lens, 2013, 39, 125-129.	0.8	21
74	Myopia Progression in Chinese Children is Slower in Summer Than in Winter. Optometry and Vision Science, 2012, 89, 1196-1202.	0.6	100
75	Myopia Progression Rates in Urban Children Wearing Single-Vision Spectacles. Optometry and Vision Science, 2012, 89, 27-32.	0.6	134
76	Picking the winners. Contact Lens and Anterior Eye, 2012, 35, e44.	0.8	0
77	Retention rates and subjective responses of myopic children wearing single vision soft contact lenses. Contact Lens and Anterior Eye, 2012, 35, e15.	0.8	0
78	Total ocular, anterior corneal and lenticular higher order aberrations in hyperopic, myopic and emmetropic eyes. Vision Research, 2012, 52, 31-37.	0.7	38
79	External Ocular Surface and Lens Microbiota in Contact Lens Wearers With Corneal Infiltrates During Extended Wear of Hydrogel Lenses. Eye and Contact Lens, 2011, 37, 90-95.	0.8	50
80	26 Does soft contact lens daily wear impact corneal curvature?. Contact Lens and Anterior Eye, 2011, 34, S22.	0.8	0
81	31 Corneal erosions with silicone hydrogel lenswear in India: clinical features and outcome. Contact Lens and Anterior Eye, 2011, 34, S24.	0.8	0
82	Decrease in Rate of Myopia Progression with a Contact Lens Designed to Reduce Relative Peripheral Hyperopia: One-Year Results. , 2011, 52, 9362.		295
83	Risk Factors for Corneal Inflammatory and Mechanical Events with Extended Wear Silicone Hydrogel Contact Lenses. Optometry and Vision Science, 2010, 87, 847-853.	0.6	26
84	Peripheral Defocus with Single-Vision Spectacle Lenses in Myopic Children. Optometry and Vision Science, 2010, 87, 4-9.	0.6	113
85	Characteristics of peripheral refractive errors of myopic and non-myopic Chinese eyes. Vision Research, 2010, 50, 31-35.	0.7	76
86	In Vivo Performance of Melimine as an Antimicrobial Coating for Contact Lenses in Models of CLARE and CLPU. , 2010, 51, 390.		109
87	Spectacle Lenses Designed to Reduce Progression of Myopia: 12-Month Results. Optometry and Vision Science, 2010, 87, 631-641.	0.6	225
88	Influence of accommodation on off-axis refractive errors in myopic eyes. Journal of Vision, 2009, 9, 14-14.	0.1	44
89	Monochromatic aberrations in hyperopic and emmetropic children. Journal of Vision, 2009, 9, 23-23.	0.1	26
90	Change in peripheral refraction and curvature of field of the human eye with accommodation. , 2009, ,		0

.

#	Article	IF	CITATIONS
91	Lid and Conjunctival Micro Biota During Contact Lens Wear in Children. Optometry and Vision Science, 2009, 86, 312-317.	0.6	40
92	Guinea Pig Models of Acute Keratitis Responses. Cornea, 2009, 28, 1153-1159.	0.9	24
93	IgE Antibody on Worn Highly Oxygen-Permeable Silicone Hydrogel Contact Lenses From Patients With Contact Lens–Induced Papillary Conjunctivitis (CLPC). Eye and Contact Lens, 2008, 34, 117-121.	0.8	15
94	Two Presentations of Contact Lens-Induced Papillary Conjunctivitis (CLPC) in Hydrogel Lens Wear: Local and General. Optometry and Vision Science, 2006, 83, E27-E36.	0.6	69
95	Comparison of Aberrometer and Autorefractor Measures of Refractive Error in Children. Optometry and Vision Science, 2006, 83, E811-E817.	0.6	20
96	Accommodative Facility in Eyes with and without Myopia. , 2006, 47, 4725.		30
97	Salicylic Acid Reduces the Production of Several Potential Virulence Factors ofPseudomonas aeruginosaAssociated with Microbial Keratitis. , 2006, 47, 4453.		64
98	Microbial Keratitis in Prospective Studies of Extended Wear With Disposable Hydrogel Contact Lenses. Cornea, 2005, 24, 156-161.	0.9	36
99	Non-steroidal anti inflammatory agents decrease bacterial colonisation of contact lenses and prevent adhesion to human corneal epithelial cells. Current Eye Research, 2004, 29, 245-251.	0.7	38
100	Hypersensitivity responses and contact lens wear. Contact Lens and Anterior Eye, 2003, 26, 57-69.	0.8	11
101	Comparison of adverse events with daily disposable hydrogels and spectacle wear. Ophthalmology, 2003, 110, 2327-2334.	2.5	45
102	Microbial Keratitis and Vision Loss with Contact Lenses. Eye and Contact Lens, 2003, 29, S131-S134.	0.8	52
103	Clinical Characterization of Corneal Infiltrative Events Observed with Soft Contact Lens Wear. Cornea, 2003, 22, 435-442.	0.9	113
104	Mechanisms in ocular inflammatory disease. , 2003, , 40-103.		0
105	General and local contact lens induced papillary conjunctivitis (CLPC). Australasian journal of optometry, The, 2002, 85, 193-197.	0.6	96
106	Contact Lens-Induced Papillary Conjunctivitis Is Associated With Increased Albumin Deposits On Extended Wear Hydrogel Lenses. Advances in Experimental Medicine and Biology, 2002, 506, 951-955.	0.8	20
107	Hypoxic Effects on the Anterior Eye of High-Dk Soft Contact Lens Wearers Are Negligible. Optometry and Vision Science, 2001, 78, 95-99.	0.6	121
108	Superior Epithelial Arcuate Lesions with Soft Contact Lens Wear. Optometry and Vision Science, 2001, 78, 9-12.	0.6	82

#	Article	IF	CITATIONS
109	(CL-199)CONTACT LENS INDUCED PAPILLARY CONJUNCTIVITIS (CLPC): A CASE CONTROL STUDY. Optometry and Vision Science, 2000, 77, 257.	0.6	5
110	ATPase-positive Dendritic Cells in the Limbal and Corneal Epithelium of Guinea Pigs After Extended Wear of Hydrogel Lenses. Cornea, 2000, 19, 374-377.	0.9	22
111	Bacterial Colonization of Disposable Soft Contact Lenses Is Greater during Corneal Infiltrative Events than during Asymptomatic Extended Lens Wear. Journal of Clinical Microbiology, 2000, 38, 4420-4424.	1.8	95
112	CONTACT LENS INDUCED PAPILLARY CONJUNCTIVITIS IS ASSOCIATED WITH INCREASED ALBUMIN DEPOSITS ON EXTENDED WEAR HYDROGEL LENSES Cornea, 2000, 19, S131.	0.9	0
113	Adherence of Acanthamoeba to human corneal epithelial cells recovered from normal non-lens wearers and asymptomatic contact lens wearers. Contact Lens and Anterior Eye, 1999, 22, 110-115.	0.8	2
114	Adverse events with extended wear of disposable hydrogels. Ophthalmology, 1999, 106, 1671-1680.	2.5	122
115	Contact Lens-Induced Peripheral Ulcers with Extended Wear of Disposable Hydrogel Lenses. Cornea, 1999, 18, 538-543.	0.9	60
116	Colonization of Hydrogel Lenses with Streptococcus pneumoniae. Cornea, 1999, 18, 289.	0.9	64
117	Functional breakdown of corneal endothelium in keratoconus: A case report. International Contact Lens Clinic (New York, N Y), 1995, 22, 213-216.	0.1	0
118	MICROBIOTA OF THE LIDS AND CONJUNCTIVA DURING EXTENDED HYDROGEL LENS WEAR. Optometry and Vision Science, 1994, 71, 55.	0.6	0
119	Acute stromal edema with soft contact lens wear: A case report. International Contact Lens Clinic (New York, N Y), 1993, 20, 230-233.	0.1	0
120	Fungal contamination of soft contact lens with Bipolaris spicifera. International Contact Lens Clinic (New York, N Y), 1993, 20, 140-144.	0.1	0
121	Influence of Neighbourhood and Schooling on Myopia: Learnings from the Shanghai Child and Adolescent Large-Scale Eye Study (SCALE). SSRN Electronic Journal, 0, , .	0.4	Ο