Masaya Shimabukuro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2569286/publications.pdf

Version: 2024-02-01

840776 888059 21 346 11 17 citations g-index h-index papers 21 21 21 190 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Effects of carbonate ions in phosphate solution on the fabrication of carbonate apatite through a dissolution–precipitation reaction. Ceramics International, 2022, 48, 1032-1037.	4.8	9
2	Surface Functionalization of Titanium for the Control and Treatment of Infections. Springer Series in Biomaterials Science and Engineering, 2022, , 195-212.	1.0	0
3	Antibacterial Honeycomb Scaffolds for Achieving Infection Prevention and Bone Regeneration. ACS Applied Materials & Empty Scatterian (2022), 14, 3762-3772.	8.0	23
4	No-Observed-Effect Level of Silver Phosphate in Carbonate Apatite Artificial Bone on Initial Bone Regeneration. ACS Infectious Diseases, 2022, 8, 159-169.	3.8	13
5	Effects of pore interconnectivity on bone regeneration in carbonate apatite blocks. International Journal of Energy Production and Management, 2022, 9, rbac010.	3.7	7
6	Fabrication and histological evaluation of porous carbonate apatite blocks using disodium hydrogen phosphate crystals as a porogen and phosphatization accelerator. Journal of Biomedical Materials Research - Part A, 2022, 110, 1278-1290.	4.0	3
7	Surface functionalization with copper endows carbonate apatite honeycomb scaffold with antibacterial, proangiogenic, and pro-osteogenic activities., 2022, 135, 212751.		9
8	Initial formation kinetics of calcium phosphate on titanium in Hanks' solution characterized using XPS. Surface and Interface Analysis, 2021, 53, 185-193.	1.8	13
9	Enhancement of antibacterial property of titanium by two-step micro arc oxidation treatment. Dental Materials Journal, 2021, 40, 592-598.	1.8	16
10	Investigation of the Long-Term Antibacterial Properties of Titanium by Two-Step Micro-Arc Oxidation Treatment. Coatings, 2021, 11, 798.	2.6	11
11	Corrosion Behavior and Bacterial Viability on Different Surface States of Copper. Zairyo To Kankyo/Corrosion Engineering, 2021, 70, 265-270.	0.2	O
12	Development of Novel Implant Material Surface with Controllable Antibacterial Properties. Denki Kagaku, 2021, 89, 346-352.	0.0	0
13	Antibacterial Property and Biocompatibility of Silver, Copper, and Zinc in Titanium Dioxide Layers Incorporated by One-Step Micro-Arc Oxidation: A Review. Antibiotics, 2020, 9, 716.	3.7	72
14	Effects of Micro-Arc Oxidation Process Parameters on Characteristics of Calcium-Phosphate Containing Oxide Layers on the Selective Laser Melted Ti13Zr13Nb Alloy. Coatings, 2020, 10, 745.	2.6	27
15	Time-Transient Effects of Silver and Copper in the Porous Titanium Dioxide Layer on Antibacterial Properties. Journal of Functional Biomaterials, 2020, 11, 44.	4.4	18
16	Investigation of antibacterial effect of copper introduced titanium surface by electrochemical treatment against facultative anaerobic bacteria. Dental Materials Journal, 2020, 39, 639-647.	1.8	17
17	Corrosion Behavior and Bacterial Viability on Different Surface States of Copper. Materials Transactions, 2020, 61, 1143-1148.	1.2	8
18	Chemical and Biological Roles of Zinc in a Porous Titanium Dioxide Layer Formed by Micro-Arc Oxidation. Coatings, 2019, 9, 705.	2.6	21

#	Article	IF	CITATIONS
19	Investigation of Realizing Both Antibacterial Property and Osteogenic Cell Compatibility on Titanium Surface by Simple Electrochemical Treatment. ACS Biomaterials Science and Engineering, 2019, 5, 5623-5630.	5.2	38
20	The Effects of Various Metallic Surfaces on Cellular and Bacterial Adhesion. Metals, 2019, 9, 1145.	2.3	22
21	Electrochemical Surface Treatment of a \hat{l}^2 -titanium Alloy to Realize an Antibacterial Property and Bioactivity. Metals, 2016, 6, 76.	2.3	19