Masaya Shimabukuro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2569286/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Antibacterial Property and Biocompatibility of Silver, Copper, and Zinc in Titanium Dioxide Layers Incorporated by One-Step Micro-Arc Oxidation: A Review. Antibiotics, 2020, 9, 716.	1.5	72
2	Investigation of Realizing Both Antibacterial Property and Osteogenic Cell Compatibility on Titanium Surface by Simple Electrochemical Treatment. ACS Biomaterials Science and Engineering, 2019, 5, 5623-5630.	2.6	38
3	Effects of Micro-Arc Oxidation Process Parameters on Characteristics of Calcium-Phosphate Containing Oxide Layers on the Selective Laser Melted Ti13Zr13Nb Alloy. Coatings, 2020, 10, 745.	1.2	27
4	Antibacterial Honeycomb Scaffolds for Achieving Infection Prevention and Bone Regeneration. ACS Applied Materials & Interfaces, 2022, 14, 3762-3772.	4.0	23
5	The Effects of Various Metallic Surfaces on Cellular and Bacterial Adhesion. Metals, 2019, 9, 1145.	1.0	22
6	Chemical and Biological Roles of Zinc in a Porous Titanium Dioxide Layer Formed by Micro-Arc Oxidation. Coatings, 2019, 9, 705.	1.2	21
7	Electrochemical Surface Treatment of a β-titanium Alloy to Realize an Antibacterial Property and Bioactivity. Metals, 2016, 6, 76.	1.0	19
8	Time-Transient Effects of Silver and Copper in the Porous Titanium Dioxide Layer on Antibacterial Properties. Journal of Functional Biomaterials, 2020, 11, 44.	1.8	18
9	Investigation of antibacterial effect of copper introduced titanium surface by electrochemical treatment against facultative anaerobic bacteria. Dental Materials Journal, 2020, 39, 639-647.	0.8	17
10	Enhancement of antibacterial property of titanium by two-step micro arc oxidation treatment. Dental Materials Journal, 2021, 40, 592-598.	0.8	16
11	Initial formation kinetics of calcium phosphate on titanium in Hanks' solution characterized using XPS. Surface and Interface Analysis, 2021, 53, 185-193.	0.8	13
12	No-Observed-Effect Level of Silver Phosphate in Carbonate Apatite Artificial Bone on Initial Bone Regeneration. ACS Infectious Diseases, 2022, 8, 159-169.	1.8	13
13	Investigation of the Long-Term Antibacterial Properties of Titanium by Two-Step Micro-Arc Oxidation Treatment. Coatings, 2021, 11, 798.	1.2	11
14	Effects of carbonate ions in phosphate solution on the fabrication of carbonate apatite through a dissolution–precipitation reaction. Ceramics International, 2022, 48, 1032-1037.	2.3	9
15	Surface functionalization with copper endows carbonate apatite honeycomb scaffold with antibacterial, proangiogenic, and pro-osteogenic activities. , 2022, 135, 212751.		9
16	Corrosion Behavior and Bacterial Viability on Different Surface States of Copper. Materials Transactions, 2020, 61, 1143-1148.	0.4	8
17	Effects of pore interconnectivity on bone regeneration in carbonate apatite blocks. International Journal of Energy Production and Management, 2022, 9, rbac010.	1.9	7
18	Fabrication and histological evaluation of porous carbonate apatite blocks using disodium hydrogen phosphate crystals as a porogen and phosphatization accelerator. Journal of Biomedical Materials Research - Part A, 2022, 110, 1278-1290.	2.1	3

#	Article	IF	CITATIONS
19	Corrosion Behavior and Bacterial Viability on Different Surface States of Copper. Zairyo To Kankyo/ Corrosion Engineering, 2021, 70, 265-270.	0.0	0
20	Surface Functionalization of Titanium for the Control and Treatment of Infections. Springer Series in Biomaterials Science and Engineering, 2022, , 195-212.	0.7	0
21	Development of Novel Implant Material Surface with Controllable Antibacterial Properties. Denki Kagaku, 2021, 89, 346-352.	0.0	0