Philippos K Tsourkas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2569214/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Instructional Models for Course-Based Research Experience (CRE) Teaching. CBE Life Sciences Education, 2022, 21, ar8.	1.1	7
2	Characterization of CRISPR Spacer and Protospacer Sequences in Paenibacillus larvae and Its Bacteriophages. Viruses, 2021, 13, 459.	1.5	4
3	Phage Commander, an Application for Rapid Gene Identification in Bacteriophage Genomes Using Multiple Programs. Phage, 2021, 2, 204-213.	0.8	11
4	Complete Genome Sequences of Cluster A6 and Cluster G1 Mycobacterium smegmatis Phages Hoot and Jolene. Microbiology Resource Announcements, 2021, 10, e0057821.	0.3	1
5	Diversity and Distribution of a Novel Genus of Hyperthermophilic Aquificae Viruses Encoding a Proof-Reading Family-A DNA Polymerase. Frontiers in Microbiology, 2020, 11, 583361.	1.5	7
6	Complete Genome Sequences of Cluster P1 and Cluster C1 Mycobacterium smegmatis Phages Jung and Ronan. Microbiology Resource Announcements, 2020, 9, .	0.3	2
7	Genomic diversity of bacteriophages infecting Microbacterium spp. PLoS ONE, 2020, 15, e0234636.	1.1	50
8	Paenibacillus larvae bacteriophages: obscure past, promising future. Microbial Genomics, 2020, 6, .	1.0	16
9	A Method for Improving the Accuracy and Efficiency of Bacteriophage Genome Annotation. International Journal of Molecular Sciences, 2019, 20, 3391.	1.8	35
10	Complete Genome Sequences of Mycobacterium smegmatis Phages Chewbacca, Reptar3000, and Riparian, Isolated in Las Vegas, Nevada. Microbiology Resource Announcements, 2019, 8, .	0.3	3
11	Complete Genome Sequences of Mycobacterium smegmatis Phages NihilNomen and Carlyle, Isolated in Las Vegas, Nevada. Microbiology Resource Announcements, 2019, 8, .	0.3	3
12	Complete Genome Sequences of Paenibacillus larvae Phages Halcyone, Heath, Scottie, and Unity from Las Vegas, Nevada. Microbiology Resource Announcements, 2018, 7, .	0.3	10
13	Complete Genome Sequences of Paenibacillus larvae Phages BN12, Dragolir, Kiel007, Leyra, Likha, Pagassa, PBL1c, and Tadhana. Genome Announcements, 2018, 6, .	0.8	12
14	Complete Genome Sequences of 18 Paenibacillus larvae Phages from the Western United States. Microbiology Resource Announcements, 2018, 7, .	0.3	5
15	Genomic Analysis of 48 Paenibacillus larvae Bacteriophages. Viruses, 2018, 10, 377.	1.5	26
16	Comparative genomics of 9 novel <i>Paenibacillus larvae</i> bacteriophages. Bacteriophage, 2016, 6, e1220349.	1.9	9
17	Experimental bacteriophage treatment of honeybees (<i>Apis mellifera</i>) infected with <i>Paenibacillus larvae</i> , the causative agent of American Foulbrood Disease. Bacteriophage, 2016, 6, e1122698.	1.9	24
18	Complete Genome Sequences of Nine Phages Capable of Infecting Paenibacillus larvae, the Causative Agent of American Foulbrood Disease in Honeybees. Genome Announcements, 2015, 3, .	0.8	20

PHILIPPOS K TSOURKAS

#	Article	IF	CITATIONS
19	Isolation and characterization of a novel phage lysin active against <i>Paenibacillus larvae</i> , a honeybee pathogen. Bacteriophage, 2015, 5, e1080787.	1.9	20
20	Discrimination of membrane antigen affinity by B cells requires dominance of kinetic proofreading over serial engagement. Cellular and Molecular Immunology, 2012, 9, 62-74.	4.8	26
21	Formation of BCR oligomers provides a mechanism for B cell affinity discrimination. Journal of Theoretical Biology, 2012, 307, 174-182.	0.8	10
22	Monte Carlo Investigation of Diffusion of Receptors and Ligands that Bind Across Opposing Surfaces. Annals of Biomedical Engineering, 2011, 39, 427-442.	1.3	5
23	Monte Carlo study of B-cell receptor clustering mediated by antigen crosslinking and directed transport. Cellular and Molecular Immunology, 2011, 8, 255-264.	4.8	12
24	Modeling of B cell Synapse Formation by Monte Carlo Simulation Shows That Directed Transport of Receptor Molecules Is a Potential Formation Mechanism. Cellular and Molecular Bioengineering, 2010, 3, 256-268.	1.0	15
25	Monte Carlo Study of Single Molecule Diffusion Can Elucidate the Mechanism of B Cell Synapse Formation. Biophysical Journal, 2008, 95, 1118-1125.	0.2	27
26	Mechanisms of B-Cell Synapse Formation Predicted by Monte Carlo Simulation. Biophysical Journal, 2007, 92, 4196-4208.	0.2	44
27	EVOLUTIONARY-GENETIC ALGORITHM FOR SOLVING 2-D STEADY-STATE CONDUCTION PROBLEMS. Numerical Heat Transfer, Part B: Fundamentals, 2003, 43, 99-115.	0.6	6