Kurt W Prins

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2569198/publications.pdf

Version: 2024-02-01

43 papers 1,396 citations

393982 19 h-index 35 g-index

48 all docs

48 docs citations

48 times ranked

2156 citing authors

#	Article	IF	CITATIONS
1	Iron Deficiency Is Associated With More Severe Pulmonary Vascular Disease in Pulmonary Hypertension Caused by Chronic Lung Disease. Chest, 2022, 161, 232-236.	0.4	5
2	Ingenuity pathway analysis of the human cardiac cell Atlas identifies differences between right and left ventricular cardiomyocytes. Pulmonary Circulation, 2022, 12, e12011.	0.8	2
3	Inflammatory Glycoprotein 130 Signaling Links Changes in Microtubules and Junctophilin-2 to Altered Mitochondrial Metabolism and Right Ventricular Contractility. Circulation: Heart Failure, 2022, 15, CIRCHEARTFAILURE121008574.	1.6	14
4	Association of Right Ventricular Afterload With Atrial Fibrillation Risk in Older Adults. Chest, 2022, 162, 884-893.	0.4	2
5	Macrophage–NLRP3 Activation Promotes Right Ventricle Failure in Pulmonary Arterial Hypertension. American Journal of Respiratory and Critical Care Medicine, 2022, 206, 608-624.	2.5	37
6	Incidence and Risk Factors of Pulmonary Hypertension After Venous Thromboembolism: An Analysis of a Large Health Care Database. Journal of the American Heart Association, 2022, 11 , .	1.6	7
7	The evolving role of interventional cardiology in the treatment of pulmonary hypertension. Catheterization and Cardiovascular Interventions, 2021, 97, E446-E453.	0.7	5
8	Association of right ventricular dysfunction and pulmonary hypertension with adverse 30â€day outcomes in COVIDâ€19 patients. Pulmonary Circulation, 2021, 11, 1-9.	0.8	17
9	Hemodynamic Characteristics and Outcomes of Pulmonary Hypertension in Patients Undergoing Tricuspid Valve Repair or Replacement. CJC Open, 2021, 3, 488-497.	0.7	6
10	A Case Report of Portopulmonary Hypertension Precipitated by Transjugular Intrahepatic Portosystemic Shunt. Chest, 2021, 159, e193-e196.	0.4	2
11	Carvedilol for Treatment of Right Ventricular Dysfunction in Pulmonary Arterial Hypertension. Journal of the American Heart Association, 2021, 10, e021518.	1.6	1
12	Intermittent Fasting Enhances Right Ventricular Function in Preclinical Pulmonary Arterial Hypertension. Journal of the American Heart Association, 2021, 10, e022722.	1.6	18
13	With No Lysine Kinase 1 Promotes Metabolic Derangements and RV Dysfunction in Pulmonary ArterialÂHypertension. JACC Basic To Translational Science, 2021, 6, 834-850.	1.9	19
14	Excess Protein O-GlcNAcylation Links Metabolic Derangements to Right Ventricular Dysfunction in Pulmonary Arterial Hypertension. International Journal of Molecular Sciences, 2020, 21, 7278.	1.8	17
15	Repurposing of medications for pulmonary arterial hypertension. Pulmonary Circulation, 2020, 10, 1-12.	0.8	10
16	Comparison of Balloon Pulmonary Angioplasty and Pulmonary Vasodilators for Inoperable Chronic Thromboembolic Pulmonary Hypertension: A Systematic Review and Meta-Analysis. Scientific Reports, 2020, 10, 8870.	1.6	22
17	Hypochloremia Is a Noninvasive Predictor of Mortality in Pulmonary Arterial Hypertension. Journal of the American Heart Association, 2020, 9, e015221.	1.6	11
18	Sex Differences in Right Ventricular Dysfunction: Insights From the Bench to Bedside. Frontiers in Physiology, 2020, 11, 623129.	1.3	15

#	Article	IF	Citations
19	Treatment Targets for Right Ventricular Dysfunction in Pulmonary Arterial Hypertension. JACC Basic To Translational Science, 2020, 5, 1244-1260.	1.9	42
20	Double Rule In. JACC: Case Reports, 2019, 1, 669-670.	0.3	1
21	Clinical Determinants and Prognostic Implications of Right Ventricular Dysfunction in Pulmonary Hypertension Caused by Chronic Lung Disease. Journal of the American Heart Association, 2019, 8, e011464.	1.6	44
22	Transition from parental prostacyclin to selexipag: a case series of five pulmonary arterial hypertension patients. Pulmonary Circulation, 2019, 9, 1-4.	0.8	23
23	Repurposing Medications for Treatment of Pulmonary Arterial Hypertension: What's Old Is New Again. Journal of the American Heart Association, 2019, 8, e011343.	1.6	50
24	Survival in pulmonary hypertension due to chronic lung disease: Influence of low diffusion capacity of the lungs for carbon monoxide. Journal of Heart and Lung Transplantation, 2019, 38, 145-155.	0.3	40
25	Disproportionate Right Ventricular Dysfunction and Poor Survival in Group 3 Pulmonary Hypertension. American Journal of Respiratory and Critical Care Medicine, 2018, 197, 1496-1499.	2.5	28
26	Interleukin-6 is independently associated with right ventricular function in pulmonary arterial hypertension. Journal of Heart and Lung Transplantation, 2018, 37, 376-384.	0.3	68
27	Exacerbation of dystrophic cardiomyopathy by phospholamban deficiency mediated chronically increased cardiac Ca2+ cycling in vivo. American Journal of Physiology - Heart and Circulatory Physiology, 2018, 315, H1544-H1552.	1.5	6
28	Chronic use of PAHâ€specific therapy in World Health Organization Group III Pulmonary Hypertension: a systematic review and metaâ€analysis. Pulmonary Circulation, 2017, 7, 145-155.	0.8	56
29	Colchicine Depolymerizes Microtubules, Increases Junctophilinâ€2, and Improves Right Ventricular Function in Experimental Pulmonary Arterial Hypertension. Journal of the American Heart Association, 2017, 6, .	1.6	49
30	Pulmonary Pulse Wave Transit Time is Associated with Right Ventricular–Pulmonary Artery Coupling in Pulmonary Arterial Hypertension. Pulmonary Circulation, 2016, 6, 576-585.	0.8	30
31	World Health Organization Group I Pulmonary Hypertension. Cardiology Clinics, 2016, 34, 363-374.	0.9	111
32	Microtubule-Mediated Misregulation ofÂJunctophilin-2 Underlies T-Tubule Disruptions and Calcium Mishandling inÂmdx Mice. JACC Basic To Translational Science, 2016, 1, 122-130.	1.9	34
33	The Critical Role of Pulmonary Arterial Compliance in Pulmonary Hypertension. Annals of the American Thoracic Society, 2016, 13, 276-284.	1.5	143
34	Pulmonary Hypertension Secondary to Heart Failure With Preserved Ejection Fraction. Canadian Journal of Cardiology, 2015, 31, 430-439.	0.8	31
35	Effects of Beta-Blocker Withdrawal in AcuteÂDecompensated Heart Failure. JACC: Heart Failure, 2015, 3, 647-653.	1.9	121
36	Assessing continuous renal replacement therapy as a rescue strategy in cardiorenal syndrome 1. CKJ: Clinical Kidney Journal, 2015, 8, 87-92.	1.4	20

3

#	Article	IF	CITATION
37	Cardiorenal Syndrome Type 1: Renal Dysfunction in Acute Decompensated Heart Failure. Journal of Clinical Outcomes Management, 2015, 22, 443-454.	1.7	10
38	Characterization of 25+year survivors of cardiac transplantation. Journal of Heart and Lung Transplantation, 2013, 32, 560-562.	0.3	1
39	Quadriceps myopathy caused by skeletal muscle-specific ablation of \hat{l}^2 cyto-actin. Journal of Cell Science, 2011, 124, 951-957.	1.2	27
40	Dystrophin is a microtubule-associated protein. Journal of Cell Biology, 2009, 186, 363-369.	2.3	180
41	Contextâ€dependent functional substitution of αâ€skeletal actin by γâ€cytoplasmic actin. FASEB Journal, 2009, 23, 2205-2214.	0.2	29
42	Destabilization of the Dystrophin-Glycoprotein Complex without Functional Deficits in α-Dystrobrevin Null Muscle. PLoS ONE, 2008, 3, e2604.	1.1	17
43	Skeletal Muscle-Specific Ablation of \hat{l}^3 cyto-Actin Does Not Exacerbate the mdx Phenotype. PLoS ONE, 2008, 3, e2419.	1.1	24