Syed Jalal Khundmiri

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2568909/publications.pdf

Version: 2024-02-01

69 papers 1,294 citations

331670 21 h-index 32 g-index

73 all docs 73 docs citations

73 times ranked

1619 citing authors

#	Article	IF	Citations
1	Systems Biology of the Vasopressin V2 Receptor: New Tools for Discovery of Molecular Actions of a GPCR. Annual Review of Pharmacology and Toxicology, 2022, 62, 595-616.	9.4	5
2	"ADPKD-omics― determinants of cyclic AMP levels in renal epithelial cells. Kidney International, 2022, 101, 47-62.	5.2	5
3	PPAR-α knockout leads to elevated blood pressure response to angiotensin II infusion associated with an increase in renal α-1 Na+/K+ ATPase protein expression and activity. Life Sciences, 2022, 296, 120444.	4.3	3
4	Rapid Lipid Modification of Endothelial Cell Membranes in Cardiac Ischemia/Reperfusion Injury: a Novel Therapeutic Strategy to Reduce Infarct Size. Cardiovascular Drugs and Therapy, 2021, 35, 113-123.	2.6	8
5	Transcriptomes of Major Proximal Tubule Cell Culture Models. Journal of the American Society of Nephrology: JASN, 2021, 32, 86-97.	6.1	35
6	Lack of ER Stress in NHERF1â€Deficient Proximal Tubule Cells Exhibiting Aberrant Npt2a Localization. FASEB Journal, 2021, 35, .	0.5	0
7	Na/H Exchange Regulatory Factor 1 Deficient Mice Show Evidence of Oxidative Stress and Altered Cisplatin Pharmacokinetics. Antioxidants, 2021, 10, 1036.	5.1	1
8	"SLC-omics―of the kidney: solute transporters along the nephron. American Journal of Physiology - Cell Physiology, 2021, 321, C507-C518.	4.6	22
9	Sodium-hydrogen exchanger regulatory factor-1 (NHERF1) confers salt sensitivity in both male and female models of hypertension in aging. Life Sciences, 2020, 243, 117226.	4.3	4
10	Does SARS-CoV-2 Infect the Kidney?. Journal of the American Society of Nephrology: JASN, 2020, 31, 2746-2748.	6.1	43
11	NHERF1 Loss Upregulates Enzymes of the Pentose Phosphate Pathway in Kidney Cortex. Antioxidants, 2020, 9, 862.	5.1	3
12	Biological Functions for STARD5 Assessed Using stard5 â^'/â^' Mice. FASEB Journal, 2020, 34, 1-1.	0.5	0
13	Loss of the Na+/H+ Exchange Regulatory Factor 1 Increases Susceptibility to Cisplatin-Induced Acute Kidney Injury. American Journal of Pathology, 2019, 189, 1190-1200.	3.8	4
14	The increased expression of microRNAs 451, 638 and 362 in Urinary Exosomes of Human Subjects profiled as Diabetic and Hypertensive. FASEB Journal, 2019, 33, 716.5.	0.5	0
15	Age†and Saltâ€dependent Changes in miRNA Profile in FBN rat and C57BL/6J mice: Role of sodium hydrogen exchanger regulatory factorâ€1 (NHERF1). FASEB Journal, 2019, 33, 713.1.	0.5	0
16	Ageâ€dependent Changes in miRNA Profile in F344 rat and C57BL/6J mice: Role of sodium hydrogen exchanger regulatory factorâ€1 (NHERF1). FASEB Journal, 2018, 32, 753.5.	0.5	0
17	Effects of Low dose Ouabain on Blood Pressure: Role of Angiotensin II type 1 receptor (AT2R1). FASEB Journal, 2018, 32, 716.15.	0.5	O
18	PACAP Protects Against Ethanol and Nicotine Toxicity in SH-SY5Y Cells: Implications for Drinking-Smoking Co-morbidity. Neurotoxicity Research, 2017, 32, 8-13.	2.7	21

#	Article	IF	CITATIONS
19	Loss of NHERF-1 expression prevents dopamine-mediated Na-K-ATPase regulation in renal proximal tubule cells from rat models of hypertension: aged F344 rats and spontaneously hypertensive rats. American Journal of Physiology - Cell Physiology, 2017, 313, C197-C206.	4.6	8
20	Effect of Fasting on Enzymes of Carbohydrate Metabolism, Brush Border Membrane and on Transport Functions in Superficial and Juxta-Medullary Cortex of Rat Kidney. Journal of Nutrition & Food Sciences, 2017, 07, .	1.0	O
21	Protein-DNA Interactions at the Opossum Npt2a Promoter are Dependent upon NHERF-1. Cellular Physiology and Biochemistry, 2016, 39, 1-12.	1.6	3
22	Identification of an RNA-binding protein that is phosphorylated by PTH and potentially mediates PTH-induced destabilization of Npt2a mRNA. American Journal of Physiology - Cell Physiology, 2016, 310, C205-C215.	4.6	11
23	Low dose ouabain stimulates Na K ATPase $\hat{l}\pm 1$ subunit association with angiotensin II type 1 receptor in renal proximal tubule cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 2624-2636.	4.1	16
24	PTH and Vitamin D. , 2016, 6, 561-601.		198
25	Advances in the Understanding of Renal Proximal Tubular Na+/K+ ATPase Regulation by Parathyroid Hormone and Dopamine., 2016,, 359-373.		O
26	Transcriptional regulation of NHE3 and SGLT1 by the circadian clock protein Per1 in proximal tubule cells. American Journal of Physiology - Renal Physiology, 2015, 309, F933-F942.	2.7	57
27	Role of Na ⁺ /H ⁺ exchanger regulatory factor 1 in forward trafficking of the type Ila Na ⁺ -P _i cotransporter. American Journal of Physiology - Renal Physiology, 2015, 309, F109-F119.	2.7	15
28	Role of PTH in the Renal Handling of Phosphate. AIMS Medical Science, 2015, 2, 162-181.	0.4	2
29	Comparison of protein expression in kidney tubular apical and basolateral membranes in young and old rats. FASEB Journal, 2015, 29, 969.9.	0.5	O
30	Low Phosphate Stimulates Naâ€H Exchanger Regulatory Factor I (NHERF1) Trafficking. FASEB Journal, 2015, 29, 809.1.	0.5	0
31	Ouabain signaling requires angiotensin II type 1 receptor activation FASEB Journal, 2015, 29, 845.31.	0.5	O
32	KSRP and Roquinâ€2: Mediators of PTHâ€Induced Npt2a mRNA Destabilization?. FASEB Journal, 2015, 29, 809.2.	0.5	0
33	Sphingolipids affect fibrinogen-induced caveolar transcytosis and cerebrovascular permeability. American Journal of Physiology - Cell Physiology, 2014, 307, C169-C179.	4.6	19
34	Advances in understanding the role of cardiac glycosides in control of sodium transport in renal tubules. Journal of Endocrinology, 2014, 222, R11-R24.	2.6	11
35	Hydrogen sulfide mitigates hyperglycemic remodeling via liver kinase B1-adenosine monophosphate-activated protein kinase signaling. Biochimica Et Biophysica Acta - Molecular Cell Research, 2014, 1843, 2816-2826.	4.1	43
36	Structural determinants for the ouabain-stimulated increase in Na–K ATPase activity. Biochimica Et Biophysica Acta - Molecular Cell Research, 2014, 1843, 1089-1102.	4.1	21

#	Article	IF	CITATIONS
37	Aldosterone regulates Na+, K+ ATPase activity in human renal proximal tubule cells through mineralocorticoid receptor. Biochimica Et Biophysica Acta - Molecular Cell Research, 2013, 1833, 2143-2152.	4.1	54
38	Vacuolar ATPase driven potassium transport in highly metastatic breast cancer cells. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2013, 1832, 1734-1743.	3.8	15
39	Plasma kininogen and kininogen fragments are biomarkers of progressive renal decline in type 1 diabetes. Kidney International, 2013, 83, 1177-1184.	5.2	36
40	Parathyroid hormone (PTH) decreases sodium-phosphate cotransporter type IIa (NpT2a) mRNA stability. American Journal of Physiology - Renal Physiology, 2013, 304, F1076-F1085.	2.7	21
41	Parathyroid Hormone (PTH) decreases mRNA stability of the Type IIa Sodiumâ€Phosphate Cotransporter (NpT2a). FASEB Journal, 2013, 27, 1210.15.	0.5	O
42	Role of sphingolipids in fibrinogenâ€induced cerebrovascular permeability. FASEB Journal, 2013, 27, 1131.9.	0.5	0
43	Ouabain increases association between Naâ€K ATPase (Naâ€K) and NHE1 through Nâ€ŧerminal domain of Naâ€K. FASEB Journal, 2013, 27, 726.10.	0.5	O
44	Renal proximal tubule ion transporters are discrepantly regulated by parathyroid hormone in acute versus chronic hyperparathyroidism. FASEB Journal, 2012, 26, 867.22.	0.5	0
45	Elongin C is a mediator of Notch4 activity in human renal tubule cells. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2011, 1814, 1748-1757.	2.3	10
46	Role of Vacuolar ATPase in the Trafficking of Renal Type IIa Sodium-phosphate Cotransporter. Cellular Physiology and Biochemistry, 2011, 27, 703-714.	1.6	9
47	Dopamine regulation of Na+-K+-ATPase requires the PDZ-2 domain of sodium hydrogen regulatory factor-1 (NHERF-1) in opossum kidney cells. American Journal of Physiology - Cell Physiology, 2011, 300, C425-C434.	4.6	21
48	Steroidogenic Acute Regulatory (StAR)â€Related Lipid Transfer Domain Protein 5 (STARD5) expression is associated with cholesterol content of human kidney proximal tubule cells. FASEB Journal, 2011, 25, 937.1.	0.5	0
49	Ouabain stimulates Na-K-ATPase through a sodium/hydrogen exchanger-1 (NHE-1)-dependent mechanism in human kidney proximal tubule cells. American Journal of Physiology - Renal Physiology, 2010, 299, F77-F90.	2.7	60
50	Evidence for Aldosteroneâ€mediated regulation of Naâ€K ATPase in kidney proximal tubules. FASEB Journal, 2010, 24, 606.25.	0.5	0
51	Endoplasmic Reticulum Stress Enhances Steroidogenic Acute Regulatory (StAR)â€Related Lipid Transfer Domain Protein 5 (STARD5) Expression and Cholesterol Efflux in HKCâ€8 Human Renal Proximal Tubule Cells. FASEB Journal, 2010, 24, 850.1.	0.5	O
52	Steroidogenic acute regulatory-related lipid transfer domain protein 5 localization and regulation in renal tubules. American Journal of Physiology - Renal Physiology, 2009, 297, F380-F388.	2.7	20
53	Low dose ouabain regulation of Naâ€K ATPase requires NHEâ€1 scaffolding properties FASEB Journal, 2009, 23, 798.5.	0.5	O
54	Novel regulatory function for NHERF-1 in Npt2a transcription. American Journal of Physiology - Renal Physiology, 2008, 294, F840-F849.	2.7	24

#	Article	IF	CITATIONS
55	PTH-mediated regulation of Na+-K+-ATPase requires Src kinase-dependent ERK phosphorylation. American Journal of Physiology - Renal Physiology, 2008, 295, F426-F437.	2.7	23
56	Nanomolar concentrations of ouabain stimulate Naâ€K ATPase through sodium hydrogen exchangerâ€1 (NHE1) dependent mechanism FASEB Journal, 2008, 22, 935.11.	0.5	0
57	Ouabain stimulates protein kinase B (Akt) phosphorylation in opossum kidney proximal tubule cells through an ERK-dependent pathway. American Journal of Physiology - Cell Physiology, 2007, 293, C1171-C1180.	4.6	42
58	Influence of Ramadan-type fasting on carbohydrate metabolism, brush border membrane enzymes and phosphate transport in rat kidney used as a model. British Journal of Nutrition, 2007, 98, 984-990.	2.3	8
59	The Sodiumâ€Hydrogen Exchanger Regulatory Factor NHERFâ€1 is required for apical membrane protein trafficking in renal epithelial cells. FASEB Journal, 2007, 21, A544.	0.5	0
60	Ouabain induces cell proliferation through calcium-dependent phosphorylation of Akt (protein kinase) Tj ETQq0 (291, C1247-C1257.	0 0 rgBT /0 4.6	Overlock 10 7 59
61	Parathyroid Hormone Regulation of Na+,K+-ATPase Requires the PDZ 1 Domain of Sodium Hydrogen Exchanger Regulatory Factor-1 in Opossum Kidney Cells. Journal of the American Society of Nephrology: JASN, 2005, 16, 2598-2607.	6.1	33
62	Parathyroid Hormone-mediated Regulation of Na+-K+-ATPase Requires ERK-dependent Translocation of Protein Kinase Cl̂±. Journal of Biological Chemistry, 2005, 280, 8705-8713.	3.4	27
63	Effect of ischemia reperfusion on sodium-dependent phosphate transport in renal brush border membranes. Biochimica Et Biophysica Acta - Biomembranes, 2005, 1716, 19-28.	2.6	23
64	Clathrin-mediated Endocytosis of Na+,K+-ATPase in Response to Parathyroid Hormone Requires ERK-dependent Phosphorylation of Ser-11 within the $\hat{l}\pm 1$ -Subunit. Journal of Biological Chemistry, 2004, 279, 17418-17427.	3.4	62
65	Effect of ischemia and reperfusion on enzymes of carbohydrate metabolism in rat kidney. Journal of Nephrology, 2004, 17, 377-83.	2.0	48
66	Parathyroid Hormone Regulation of Type II Sodium-Phosphate Cotransporters Is Dependent on an A Kinase Anchoring Protein. Journal of Biological Chemistry, 2003, 278, 10134-10141.	3.4	40
67	Role of NHERF-1 in Regulation of the Activity of Na-K ATPase and Sodium-Phosphate Co-transport in Epithelial Cells. Journal of the American Society of Nephrology: JASN, 2003, 14, 1711-1719.	6.1	52
68	PTH and DA regulate Na-K ATPase through divergent pathways. American Journal of Physiology - Renal Physiology, 2002, 282, F512-F522.	2.7	33
69	Effect of reversible and irreversible ischemia on marker enzymes of BBM from renal cortical PT subpopulations. American Journal of Physiology - Renal Physiology, 1997, 273, F849-F856.	2.7	15