Jennifer A Maynard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2568806/publications.pdf

Version: 2024-02-01

65 papers

3,854 citations

201674 27 h-index 138484 58 g-index

72 all docs

72 docs citations

72 times ranked 6415 citing authors

#	Article	IF	CITATIONS
1	Antibodies binding diverse pertactin epitopes protect mice from Bordetella pertussis infection. Journal of Biological Chemistry, 2022, 298, 101715.	3.4	4
2	The SARS-CoV-2 spike reversibly samples an open-trimer conformation exposing novel epitopes. Nature Structural and Molecular Biology, 2022, 29, 229-238.	8.2	81
3	An antibody Fc engineered for conditional antibody-dependent cellular cytotoxicity at the low tumor microenvironment pH. Journal of Biological Chemistry, 2022, 298, 101798.	3.4	5
4	Bioproduced Proteins On Demand (Bio-POD) in hydrogels using Pichia pastoris. Bioactive Materials, 2021, 6, 2390-2399.	15.6	13
5	Structural basis for antibody binding to adenylate cyclase toxin reveals RTX linkers as neutralization-sensitive epitopes. PLoS Pathogens, 2021, 17, e1009920.	4.7	9
6	Recombinant antibodies recognize conformation-dependent epitopes of the leucine zipper of misfolding-prone myocilin. Journal of Biological Chemistry, 2021, 297, 101067.	3.4	1
7	Expression and characterization of SARS-CoV-2 spike proteins. Nature Protocols, 2021, 16, 5339-5356.	12.0	31
8	Structure-based design of prefusion-stabilized SARS-CoV-2 spikes. Science, 2020, 369, 1501-1505.	12.6	977
9	Neutralization of pertussis toxin by a single antibody prevents clinical pertussis in neonatal baboons. Science Advances, 2020, 6, eaay9258.	10.3	26
10	A facile technology for the high-throughput sequencing of the paired VH:VL and TCRÎ ² :TCRα repertoires. Science Advances, 2020, 6, eaay9093.	10.3	18
11	Engineering Antibodies on the Surface of CHO Cells. Methods in Molecular Biology, 2020, 2070, 397-422.	0.9	2
12	Human cytomegalovirus-specific T-cell receptor engineered for high affinity and soluble expression using mammalian cell display. Journal of Biological Chemistry, 2019, 294, 5790-5804.	3.4	19
13	When monoclonal antibodies are not monospecific: Hybridomas frequently express additional functional variable regions. MAbs, 2018, 10, 539-546.	5.2	74
14	Recent Advances Incorporating Superparamagnetic Nanoparticles into Immunoassays. ACS Applied Nano Materials, 2018, 1, 512-521.	5.0	64
15	Measurement of Twoâ€Photon Absorption of Silicon Nanocrystals in Colloidal Suspension for Bioâ€Imaging Applications. Physica Status Solidi (B): Basic Research, 2018, 255, 1700501.	1.5	12
16	Characterization of Individual Human Antibodies That Bind Pertussis Toxin Stimulated by Acellular Immunization. Infection and Immunity, 2018, 86, .	2.2	13
17	Identification of high affinity HER2 binding antibodies using CHO Fab surface display. Protein Engineering, Design and Selection, 2018, 31, 91-101.	2.1	13
18	Engineering therapeutic antibodies to combat infectious diseases. Current Opinion in Chemical Engineering, 2018, 19, 131-141.	7.8	28

#	Article	IF	CITATIONS
19	Humanised monoclonal antibodies neutralise pertussis toxin by receptor blockade and reduced retrograde trafficking. Cellular Microbiology, 2018, 20, e12948.	2.1	11
20	Evaluation of Adenylate Cyclase Toxoid Antigen in Acellular Pertussis Vaccines by Using a Bordetella pertussis Challenge Model in Mice. Infection and Immunity, 2018, 86, .	2.2	30
21	Fine Epitope Mapping of Two Antibodies Neutralizing the <i>Bordetella</i> Adenylate Cyclase Toxin. Biochemistry, 2017, 56, 1324-1336.	2.5	14
22	Prior exposure to <i>Bordetella</i> species as an exclusion criterion in the baboon model of pertussis. Journal of Veterinary Medical Science, 2017, 79, 60-64.	0.9	10
23	De novo design of antibody complementarity determining regions binding a FLAG tetra-peptide. Scientific Reports, 2017, 7, 10295.	3.3	27
24	Charge Shielding Prevents Aggregation of Supercharged GFP Variants at High Protein Concentration. Molecular Pharmaceutics, 2017, 14, 3269-3280.	4.6	27
25	Passive Immunization with Anti-Pertussis Toxin Humanized Monoclonal Antibody Mitigates Clinical Signs of Pertussis Infection in Newborn Baboons. Open Forum Infectious Diseases, 2017, 4, S4-S5.	0.9	0
26	Synergistic Neutralization of Pertussis Toxin by a Bispecific Antibody <i>In Vitro</i> and <i>In Vivo</i> Vaccine Journal, 2016, 23, 851-862.	3.1	14
27	Viscosity Reduction of a Concentrated Monoclonal Antibody with Arginine·HCl and Arginine·Glutamate. Industrial & Engineering Chemistry Research, 2016, 55, 11225-11234.	3.7	30
28	Inclusion of an RGD Motif Alters Invasin Integrin-Binding Affinity and Specificity. Biochemistry, 2016, 55, 2078-2090.	2.5	7
29	Bioavailability of Fullerene under Environmentally Relevant Conditions: Effects of Humic Acid and Fetal Bovine Serum on Accumulation in Lipid Bilayers and Cellular Uptake. Environmental Science & Environmental Science & Environmental Science & Environ Republic Rep	10.0	23
30	The Bordetella Adenylate Cyclase Repeat-in-Toxin (RTX) Domain Is Immunodominant and Elicits Neutralizing Antibodies. Journal of Biological Chemistry, 2015, 290, 3576-3591.	3.4	30
31	Structural and biophysical characterization of an epitope-specific engineered Fab fragment and complexation with membrane proteins: implications for co-crystallization. Acta Crystallographica Section D: Biological Crystallography, 2015, 71, 896-906.	2.5	13
32	Rapid Fine Conformational Epitope Mapping Using Comprehensive Mutagenesis and Deep Sequencing. Journal of Biological Chemistry, 2015, 290, 26457-26470.	3.4	67
33	Increased Fab thermoresistance via V _H -targeted directed evolution. Protein Engineering, Design and Selection, 2015, 28, 365-377.	2.1	9
34	A cocktail of humanized anti–pertussis toxin antibodies limits disease in murine and baboon models of whooping cough. Science Translational Medicine, 2015, 7, 316ra195.	12.4	48
35	Effects of protein engineering and rational mutagenesis on crystal lattice of single chain antibody fragments. Proteins: Structure, Function and Bioinformatics, 2014, 82, 1884-1895.	2.6	5
36	Immunotherapeutic Approaches To Prevent Cytomegalovirus-Mediated Disease. Microbiology Spectrum, 2014, 2, AID-0009-2013.	3.0	3

#	Article	IF	CITATIONS
37	In Vivo Whole Animal Fluorescence Imaging of a Microparticle-Based Oral Vaccine Containing (CuInSexS2–x)/ZnS Core/Shell Quantum Dots. Nano Letters, 2013, 13, 4294-4298.	9.1	98
38	Frozen-State Storage Stability of a Monoclonal Antibody: Aggregation is Impacted by Freezing Rate and Solute Distribution. Journal of Pharmaceutical Sciences, 2013, 102, 1194-1208.	3.3	64
39	Back to the future: recombinant polyclonal antibody therapeutics. Current Opinion in Chemical Engineering, 2013, 2, 405-415.	7.8	26
40	Tunable equilibrium nanocluster dispersions at high protein concentrations. Soft Matter, 2013, 9, 1766-1771.	2.7	30
41	The Skp Chaperone Helps Fold Soluble Proteins <i>iin Vitro</i> by Inhibiting Aggregation. Biochemistry, 2012, 51, 4822-4834.	2.5	35
42	Nanohole-Based Surface Plasmon Resonance Instruments with Improved Spectral Resolution Quantify a Broad Range of Antibody-Ligand Binding Kinetics. Analytical Chemistry, 2012, 84, 1941-1947.	6.5	96
43	Flanking Residues Are Central to DO11.10 T Cell Hybridoma Stimulation by Ovalbumin 323–339. PLoS ONE, 2012, 7, e47585.	2.5	3
44	Concentrated Dispersions of Equilibrium Protein Nanoclusters That Reversibly Dissociate into Active Monomers. ACS Nano, 2012, 6, 1357-1369.	14.6	104
45	Antibody nanoparticle dispersions formed with mixtures of crowding molecules retain activity and In Vivo bioavailability. Journal of Pharmaceutical Sciences, 2012, 101, 3763-3778.	3.3	13
46	Restriction enzyme-free construction of random gene mutagenesis libraries in Escherichia coli. Analytical Biochemistry, 2012, 421, 640-648.	2.4	14
47	Crystallization chaperone strategies for membrane proteins. Methods, 2011, 55, 293-302.	3.8	32
48	Antibodies Recognizing Protective Pertussis Toxin Epitopes Are Preferentially Elicited by Natural Infection versus Acellular Immunization. Vaccine Journal, 2011, 18, 954-962.	3.1	29
49	Conversion of scFv peptide-binding specificity for crystal chaperone development. Protein Engineering, Design and Selection, 2011, 24, 419-428.	2.1	11
50	Forward engineering of synthetic bio-logical AND gates. Biochemical Engineering Journal, 2009, 47, 38-47.	3.6	100
51	Surface plasmon resonance for highâ€throughput ligand screening of membraneâ€bound proteins. Biotechnology Journal, 2009, 4, 1542-1558.	3. 5	108
52	Characterization of a Key Neutralizing Epitope on Pertussis Toxin Recognized by Monoclonal Antibody 187. Biochemistry, 2009, 48, 11982-11993.	2.5	26
53	Crystal Structure of the Engineered Neutralizing Antibody M18 Complexed to Domain 4 of the Anthrax Protective Antigen. Journal of Molecular Biology, 2009, 387, 680-693.	4.2	33
54	Progress Towards Recombinant Anti-Infective Antibodies. Recent Patents on Anti-infective Drug Discovery, 2009, 4, 1-17.	0.8	22

#	Article	IF	CITATIONS
55	Modeling the structure of mAb 14B7 bound to the anthrax protective antigen. Proteins: Structure, Function and Bioinformatics, 2008, 70, 218-230.	2.6	32
56	Microarrays in infection and immunity. Current Opinion in Chemical Biology, 2007, 11, 306-315.	6.1	17
57	Structural evidence for a germline-encoded T cell receptor–major histocompatibility complex interaction 'codon'. Nature Immunology, 2007, 8, 975-983.	14.5	221
58	High-level bacterial secretion of single-chain $\hat{l}\pm\hat{l}^2$ T-cell receptors. Journal of Immunological Methods, 2005, 306, 51-67.	1.4	43
59	Structure of an Autoimmune T Cell Receptor Complexed with Class II Peptide-MHC. Immunity, 2005, 22, 81-92.	14.3	146
60	In Vitro Scanning-Saturation Mutagenesis. , 2002, 182, 149-163.		8
61	Protection against anthrax toxin by recombinant antibody fragments correlates with antigen affinity. Nature Biotechnology, 2002, 20, 597-601.	17.5	260
62	A Novel All Helix Fold of the AP180 Amino-Terminal Domain for Phosphoinositide Binding and Clathrin Assembly in Synaptic Vesicle Endocytosis. Cell, 2001, 104, 433-440.	28.9	87
63	Antibody Engineering. Annual Review of Biomedical Engineering, 2000, 2, 339-376.	12.3	206
64	Rhizoremediation of Trichloroethylene by a Recombinant, Root-Colonizing <i>Pseudomonas fluorescens</i> Strain Expressing Toluene <i>ortho</i> -Monooxygenase Constitutively. Applied and Environmental Microbiology, 1998, 64, 112-118.	3.1	139
65	Immunotherapeutic Approaches To Prevent Cytomegalovirus-Mediated Disease. , 0, , 273-288.		0