Maithé Tauber

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2568774/publications.pdf

Version: 2024-02-01

78 papers 5,360 citations

94433 37 h-index 71 g-index

78 all docs

78 docs citations

78 times ranked 7016 citing authors

#	Article	lF	CITATIONS
1	Approach to the Patient With Prader–Willi Syndrome. Journal of Clinical Endocrinology and Metabolism, 2022, 107, 1698-1705.	3.6	10
2	Impact of Deprivation on Obesity in Children with PWS. Journal of Clinical Medicine, 2022, 11, 2255.	2.4	1
3	Hypothalamic syndrome. Nature Reviews Disease Primers, 2022, 8, 24.	30.5	42
4	What can we learn from PWS and SNORD116 genes about the pathophysiology of addictive disorders?. Molecular Psychiatry, 2021, 26, 51-59.	7.9	20
5	Prader–Willi syndrome: Hormone therapies. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2021, 181, 351-367.	1.8	11
6	Endocrine disorders in Prader-Willi syndrome: a model to understand and treat hypothalamic dysfunction. Lancet Diabetes and Endocrinology,the, 2021, 9, 235-246.	11.4	80
7	Growth Restriction and Genomic Imprinting-Overlapping Phenotypes Support the Concept of an Imprinting Network. Genes, 2021, 12, 585.	2.4	22
8	SHP2 drives inflammation-triggered insulin resistance by reshaping tissue macrophage populations. Science Translational Medicine, 2021, 13, .	12.4	26
9	SNORD116 and growth hormone therapy impact IGFBP7 in Prader–Willi syndrome. Genetics in Medicine, 2021, 23, 1664-1672.	2.4	7
10	Physical Activity in Patients with Prader-Willi Syndromeâ€"A Systematic Review of Observational and Interventional Studies. Journal of Clinical Medicine, 2021, 10, 2528.	2.4	8
11	Paradoxical low severity of COVID-19 in Prader-Willi syndrome: data from a French survey on 647 patients. Orphanet Journal of Rare Diseases, 2021, 16, 325.	2.7	2
12	Is ghrelin a biomarker of early-onset scoliosis in children with Prader–Willi syndrome?. Orphanet Journal of Rare Diseases, 2021, 16, 305.	2.7	1
13	Patients with PWS and related syndromes display differentially methylated regions involved in neurodevelopmental and nutritional trajectory. Clinical Epigenetics, 2021, 13, 159.	4.1	4
14	Hyponatremia in Children and Adults with Prader–Willi Syndrome: A Survey Involving Seven Countries. Journal of Clinical Medicine, 2021, 10, 3555.	2.4	4
15	Diabetes Mellitus in Prader-Willi Syndrome: Natural History during the Transition from Childhood to Adulthood in a Cohort of 39 Patients. Journal of Clinical Medicine, 2021, 10, 5310.	2.4	4
16	Yearly Height Gain Is Dependent on the Truly Received Dose of Growth Hormone and the Duration of Periods of Poor Adherence: Practical Lessons From the French Easypodâ,, Connect Multicenter Observational Study. Frontiers in Endocrinology, 2021, 12, 790169.	3.5	0
17	The RDoC approach for translational psychiatry: Could a genetic disorder with psychiatric symptoms help fill the matrix? the example of Prader–Willi syndrome. Translational Psychiatry, 2020, 10, 274.	4.8	15
18	Ghrelin uses the GHS-R1a/Gi/cAMP pathway and induces differentiation only in mature osteoblasts. This ghrelin pathway is impaired in AIS patients. Biochemistry and Biophysics Reports, 2020, 24, 100782.	1.3	2

#	Article	IF	Citations
19	Equivocal expression of emotions in children with Prader-Willi syndrome: what are the consequences for emotional abilities and social adjustment?. Orphanet Journal of Rare Diseases, 2020, 15, 55.	2.7	7
20	Effect of topiramate on eating behaviours in Prader-Willi syndrome: TOPRADER double-blind randomised placebo-controlled study. Translational Psychiatry, 2019, 9, 274.	4.8	35
21	Causes of death in Prader-Willi syndrome: lessons from 11 years' experience of a national reference center. Orphanet Journal of Rare Diseases, 2019, 14, 238.	2.7	50
22	Loss-of-function mutations in MRAP2 are pathogenic in hyperphagic obesity with hyperglycemia and hypertension. Nature Medicine, 2019, 25, 1733-1738.	30.7	54
23	Face processing and exploration of social signals in Prader-Willi syndrome: a genetic signature. Orphanet Journal of Rare Diseases, 2019, 14, 262.	2.7	17
24	Praderâ€Willi syndrome: A model for understanding the ghrelin system. Journal of Neuroendocrinology, 2019, 31, e12728.	2.6	41
25	Noonan syndrome-causing SHP2 mutants impair ERK-dependent chondrocyte differentiation during endochondral bone growth. Human Molecular Genetics, 2018, 27, 2276-2289.	2.9	31
26	A model to characterize psychopathological features in adults with Praderâ€Willi syndrome. American Journal of Medical Genetics, Part A, 2018, 176, 41-47.	1.2	24
27	Chromosome 14q32.2 Imprinted Region Disruption as an Alternative Molecular Diagnosis of Silver-Russell Syndrome. Journal of Clinical Endocrinology and Metabolism, 2018, 103, 2436-2446.	3.6	48
28	AZP-531, an unacylated ghrelin analog, improves food-related behavior in patients with Prader-Willi syndrome: A randomized placebo-controlled trial. PLoS ONE, 2018, 13, e0190849.	2.5	69
29	Growth Hormone Treatment for Prader-Willi Syndrome. Pediatric Endocrinology Reviews, 2018, 16, 91-99.	1.2	5
30	The Use of Oxytocin to Improve Feeding and Social Skills in Infants With Prader–Willi Syndrome. Pediatrics, 2017, 139, .	2.1	117
31	Final height and intrauterine growth retardation. Annales D'Endocrinologie, 2017, 78, 96-97.	1.4	2
32	Early diagnosis and care is achieved but should be improved in infants with Prader-Willi syndrome. Orphanet Journal of Rare Diseases, 2017, 12, 118.	2.7	80
33	Effect of Genotype and Previous GH Treatment on Adiposity in Adults With Prader-Willi Syndrome. Journal of Clinical Endocrinology and Metabolism, 2016, 101, 4895-4903.	3.6	33
34	Induced pluripotent stem cells (iPSC) created from skin fibroblasts of patients with Prader-Willi syndrome (PWS) retain the molecular signature of PWS. Stem Cell Research, 2016, 17, 526-530.	0.7	28
35	Copy number variation analysis in adults with catatonia confirms haploinsufficiency of SHANK3 as a predisposing factor. European Journal of Medical Genetics, 2016, 59, 436-443.	1.3	20
36	Bridging the gap: metabolic and endocrine care of patients during transition. Endocrine Connections, 2016, 5, R44-R54.	1.9	38

#	Article	IF	Citations
37	Dyssynchrony and perinatal psychopathology impact of child disease on parents-child interactions, the paradigm of Prader Willi syndrom. Journal of Physiology (Paris), 2016, 110, 427-433.	2.1	4
38	Loss of Magel2 impairs the development of hypothalamic Anorexigenic circuits. Human Molecular Genetics, 2016, 25, 3208-3215.	2.9	40
39	High unacylated ghrelin levels support the concept of anorexia in infants with prader-willi syndrome. Orphanet Journal of Rare Diseases, 2016, 11, 56.	2.7	38
40	Psychotropic treatments in Prader-Willi syndrome: a critical review of published literature. European Journal of Pediatrics, 2016, 175, 9-18.	2.7	50
41	Growth patterns of patients with Noonan syndrome: correlation with age and genotype. European Journal of Endocrinology, 2016, 174, 641-650.	3.7	40
42	Deficiency in prohormone convertase PC1 impairs prohormone processing in Prader-Willi syndrome. Journal of Clinical Investigation, 2016, 127, 293-305.	8.2	120
43	Sequelae of GH Treatment in Children with PWS. Pediatric Endocrinology Reviews, 2016, 14, 138-146.	1.2	9
44	Muscle and Bone Impairment in Children With Marfan Syndrome: Correlation With Age and <i>FBN1</i> Genotype. Journal of Bone and Mineral Research, 2015, 30, 1369-1376.	2.8	26
45	Pituitary Stalk Interruption Syndrome from Infancy to Adulthood: Clinical, Hormonal, and Radiological Assessment According to the Initial Presentation. PLoS ONE, 2015, 10, e0142354.	2.5	51
46	An Early Postnatal Oxytocin Treatment Prevents Social and Learning Deficits in Adult Mice Deficient for Magel2, a Gene Involved in Prader-Willi Syndrome and Autism. Biological Psychiatry, 2015, 78, 85-94.	1.3	140
47	Highly restricted deletion of the SNORD116 region is implicated in Prader–Willi Syndrome. European Journal of Human Genetics, 2015, 23, 252-255.	2.8	142
48	Prader-Willi Syndrome as a Model of Human Hyperphagia. Frontiers of Hormone Research, 2014, 42, 93-106.	1.0	35
49	LEOPARD syndrome-associated SHP2 mutation confers leanness and protection from diet-induced obesity. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E4494-503.	7.1	52
50	Ontogenesis of oxytocin pathways in the mammalian brain: late maturation and psychosocial disorders. Frontiers in Neuroanatomy, 2014, 8, 164.	1.7	81
51	Growth Hormone Research Society Workshop Summary: Consensus Guidelines for Recombinant Human Growth Hormone Therapy in Prader-Willi Syndrome. Journal of Clinical Endocrinology and Metabolism, 2013, 98, E1072-E1087.	3.6	288
52	Towards Optimal Treatment with Growth Hormone in Short Children and Adolescents: Evidence and Theses. Hormone Research in Paediatrics, 2013, 79, 51-67.	1.8	45
53	Growth Hormone Therapy for Children and Adolescents with Prader-Willi Syndrome Is Associated with Improved Body Composition and Metabolic Status in Adulthood. Journal of Clinical Endocrinology and Metabolism, 2013, 98, E328-E335.	3.6	54
54	Heterozygous Mutations Causing Partial Prohormone Convertase 1 Deficiency Contribute to Human Obesity. Diabetes, 2012, 61, 383-390.	0.6	94

#	Article	IF	Citations
55	Growth Hormone Receptor Polymorphism and Growth Hormone Therapy Response in Children: A Bayesian Meta-Analysis. American Journal of Epidemiology, 2012, 175, 867-877.	3.4	33
56	Dysfunction of lipid sensor GPR120 leads to obesity in both mouse and human. Nature, 2012, 483, 350-354.	27.8	572
57	PET Scan Perfusion Imaging in the Prader–Willi Syndrome: New Insights into the Psychiatric and Social Disturbances. Journal of Cerebral Blood Flow and Metabolism, 2011, 31, 275-282.	4.3	29
58	Oxytocin may be useful to increase trust in others and decrease disruptive behaviours in patients with Prader-Willi syndrome: a randomised placebo-controlled trial in 24 patients. Orphanet Journal of Rare Diseases, 2011, 6, 47.	2.7	91
59	Functional Effects of <i>PTPN11</i> (SHP2) Mutations Causing LEOPARD Syndrome on Epidermal Growth Factor-Induced Phosphoinositide 3-Kinase/AKT/Glycogen Synthase Kinase 3Î ² Signaling. Molecular and Cellular Biology, 2010, 30, 2498-2507.	2.3	85
60	Elevated Insulin-Like Growth Factor-I Values in Children with Prader-Willi Syndrome Compared with Growth Hormone (GH) Deficiency Children over Two Years of GH Treatment. Journal of Clinical Endocrinology and Metabolism, 2010, 95, 4600-4608.	3.6	36
61	A variant near MTNR1B is associated with increased fasting plasma glucose levels and type 2 diabetes risk. Nature Genetics, 2009, 41, 89-94.	21.4	540
62	Genome-wide association study for early-onset and morbid adult obesity identifies three new risk loci in European populations. Nature Genetics, 2009, 41, 157-159.	21.4	585
63	The shortness of Pygmies is associated with severe under-expression of the growth hormone receptor. Molecular Genetics and Metabolism, 2009, 98, 310-313.	1.1	44
64	French database of children and adolescents with Prader-Willi syndrome. BMC Medical Genetics, 2008, 9, 89.	2.1	18
65	Observations of nonadherence to recombinant human growth hormone therapy in clinical practice. Clinical Therapeutics, 2008, 30, 307-316.	2.5	98
66	Is scoliosis an issue for giving growth hormone to children with Prader-Willi syndrome?. Archives of Disease in Childhood, 2008, 93, 1004-1006.	1.9	9
67	Scoliosis in Patients With Prader-Willi Syndrome. Pediatrics, 2008, 122, e499-e503.	2.1	71
68	Hyperghrelinemia Precedes Obesity in Prader-Willi Syndrome. Journal of Clinical Endocrinology and Metabolism, 2008, 93, 2800-2805.	3.6	117
69	Major Determinants of Height Development in Turner Syndrome (TS) Patients Treated With GH: Analysis of 987 Patients From KIGS. Pediatric Research, 2007, 61, 105-110.	2.3	64
70	Factors associated with overweight in preschool-age children in southwestern France. American Journal of Clinical Nutrition, 2007, 85, 1643-1649.	4.7	83
71	Insulin resistance and the metabolic syndrome in obese French children. Clinical Endocrinology, 2006, 64, 672-678.	2.4	86
72	Self-Esteem and Social Adjustment in Young Women with Turner Syndromeâ€"Influence of Pubertal Management and Sexuality: Population-Based Cohort Study. Journal of Clinical Endocrinology and Metabolism, 2006, 91, 2972-2979.	3.6	138

#	Article	IF	CITATION
73	Long-Term Evolution of Endocrine Disorders and Effect of GH Therapy in 35 Patients with Pituitary Stalk Interruption Syndrome. Hormone Research in Paediatrics, 2005, 64, 266-273.	1.8	38
74	Hyperghrelinemia Is a Common Feature of Prader-Willi Syndrome and Pituitary Stalk Interruption: A Pathophysiological Hypothesis. Hormone Research, 2004, 62, 49-54.	1.8	42
75	Stimulating effect of growth hormone on cytokine release in children. European Journal of Endocrinology, 2003, 149, 397-401.	3.7	29
76	Adolescents with Partial Growth Hormone (GH) Deficiency Develop Alterations of Body Composition after GH Discontinuation and Require Follow-Up. Journal of Clinical Endocrinology and Metabolism, 2003, 88, 5101-5106.	3.6	49
77	Auxological and Endocrine Evolution of 28 Children with Prader-Willi Syndrome: Effect of GH Therapy in 14 Children. Hormone Research in Paediatrics, 2000, 53, 279-287.	1.8	58
78	Growth Hormone (GH) Retesting and Auxological Data in 131 GH-Deficient Patients after Completion of Treatment. Journal of Clinical Endocrinology and Metabolism, 1997, 82, 352-356.	3.6	178