Torstein Fjermestad

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2568570/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hydrogenation of CO ₂ to Methanol by Pt Nanoparticles Encapsulated in UiO-67: Deciphering the Role of the Metal–Organic Framework. Journal of the American Chemical Society, 2020, 142, 999-1009.	13.7	141
2	Practical Implications of Boronâ€ŧoâ€Zinc Transmetalation for the Catalytic Asymmetric Arylation of Aldehydes. Angewandte Chemie - International Edition, 2008, 47, 1098-1101.	13.8	82
3	Mechanistic Comparison of the Dealumination in SSZ-13 and the Desilication in SAPO-34. Journal of Physical Chemistry C, 2013, 117, 13442-13451.	3.1	62
4	Mechanism of Si Island Formation in SAPO-34. Journal of Physical Chemistry C, 2015, 119, 2086-2095.	3.1	33
5	Desilication of SAPO-34: Reaction Mechanisms from Periodic DFT Calculations. Journal of Physical Chemistry C, 2015, 119, 2073-2085.	3.1	23
6	Computational Study of the Mechanism of Cyclic Acetal Formation via the Iridium(I)-Catalyzed Double Hydroalkoxylation of 4-Pentyn-1-ol with Methanol. Organometallics, 2011, 30, 618-626.	2.3	17
7	A Computational Study on the Role of Chiral <i>N</i> â€Oxides in Enantioselective Pauson–Khand Reactions. Chemistry - A European Journal, 2011, 17, 10050-10057.	3.3	15
8	Acrolein oxidation to acrylic acid over the MoVOx material. Insights from DFT modeling. Applied Catalysis A: General, 2018, 565, 68-75.	4.3	13
9	Origin of enantioselectivity in asymmetric Pauson–Khand reactions catalyzed by [(BINAP)Co2(CO)6]â~†. Journal of Molecular Catalysis A, 2010, 324, 127-132.	4.8	10
10	Reactivity trends of the MoVO _x mixed metal oxide catalyst from density functional modeling. Catalysis Science and Technology, 2019, 9, 1559-1569.	4.1	10
11	How the distribution of reduced vanadium centers affects structure and stability of the MoVO _x material. Catalysis Science and Technology, 2018, 8, 2654-2660.	4.1	9
12	On the structure of superbasic (MgO) _n sites solvated in a faujasite zeolite. Physical Chemistry Chemical Physics, 2018, 20, 18503-18514.	2.8	7
13	Surface Reactivity of the Vanadium Phosphate Catalyst for the Oxidation of Methane. Topics in Catalysis, 2017, 60, 1698-1708.	2.8	4
14	Correction to "Mechanism of Si Island Formation in SAPO-34― Journal of Physical Chemistry C, 2015, 119, 20782-20782.	3.1	0
15	Configurations of V4+ centers in the MoVO catalyst material. A systematic stability analysis of DFT results. SN Applied Sciences, 2020, 2, 1,	2.9	0