David G Jenkins

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2568528/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ecological and evolutionary significance of dispersal by freshwater invertebrates. Ecology Letters, 2003, 6, 783-796.	6.4	458
2	A solution to minimum sample size for regressions. PLoS ONE, 2020, 15, e0229345.	2.5	309
3	Does size matter for dispersal distance?. Global Ecology and Biogeography, 2007, 16, 415-425.	5.8	301
4	DO SIMILAR COMMUNITIES DEVELOP IN SIMILAR SITES? A TEST WITH ZOOPLANKTON STRUCTURE AND FUNCTION. Ecological Monographs, 1998, 68, 421-443.	5.4	225
5	Biogeography and ecology: towards the integration of two disciplines. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366, 2438-2448.	4.0	106
6	Zooplankton may not disperse readily in wind, rain, or waterfowl. Hydrobiologia, 1998, 387/387, 15-21.	2.0	104
7	A metaâ€analysis of isolation by distance: relic or reference standard for landscape genetics?. Ecography, 2010, 33, 315-320.	4.5	92
8	Humanâ€ e ided and natural dispersal drive gene flow across the range of an invasive mosquito. Molecular Ecology, 2015, 24, 284-295.	3.9	87
9	How robust are popular beta diversity indices to sampling error?. Ecosphere, 2018, 9, e02100.	2.2	79
10	Temporary aquatic habitats: constraints and opportunities. Aquatic Ecology, 2000, 34, 3-8.	1.5	75
11	GIS-BASED ESTIMATES OF FORMER AND CURRENT DEPRESSIONAL WETLANDS IN AN AGRICULTURAL LANDSCAPE. , 2005, 15, 1199-1208.		57
12	IN SEARCH OF QUORUM EFFECTS IN METACOMMUNITY STRUCTURE: SPECIES CO-OCCURRENCE ANALYSES. Ecology, 2006, 87, 1523-1531.	3.2	51
13	Effects of Simulated Mars Conditions on the Survival and Growth of <i>Escherichia coli</i> and <i>Serratia liquefaciens</i> . Applied and Environmental Microbiology, 2010, 76, 2377-2386.	3.1	50
14	Biogeography and ecology: two views of one world. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366, 2331-2335.	4.0	48
15	Isolated Wetland Loss and Degradation Over Two Decades in an Increasingly Urbanized Landscape. Wetlands, 2013, 33, 117-127.	1.5	44
16	Rapid local adaptation to northern winters in the invasive Asian tiger mosquito <i>Aedes albopictus</i> : A moving target. Journal of Applied Ecology, 2019, 56, 2518-2527.	4.0	42
17	Consequences of Prairie Wetland Drainage for Crustacean Biodiversity and Metapopulations. Conservation Biology, 2003, 17, 158-167.	4.7	40
18	Dispersal-limited zooplankton distribution and community composition in new ponds. Hydrobiologia, 1995, 313-314, 15-20.	2.0	39

DAVID G JENKINS

#	Article	IF	CITATIONS
19	Behavioral constraints for the spread of the eastern mosquitofish, Gambusia holbrooki (Poeciliidae). Biological Invasions, 2008, 10, 59-66.	2.4	37
20	Interactive effects of pasture management intensity, release from grazing and prescribed fire on forty subtropical wetland plant assemblages. Journal of Applied Ecology, 2016, 53, 159-170.	4.0	35
21	Ranked species occupancy curves reveal common patterns among diverse metacommunities. Global Ecology and Biogeography, 2011, 20, 486-497.	5.8	33
22	Comparing diversity to flower-bee interaction networks reveals unsuccessful foraging of native bees in disturbed habitats. Biological Conservation, 2016, 202, 110-118.	4.1	33
23	Biogeochemical water type influences community composition, species richness, and biomass in megadiverse Amazonian fish assemblages. Scientific Reports, 2020, 10, 15349.	3.3	33
24	Zooplankton may not disperse readily in wind, rain, or waterfowl. , 1998, , 15-21.		30
25	Comparison of processes regulating zooplankton assemblages in new freshwater pools. Hydrobiologia, 1998, 387/387, 207-214.	2.0	27
26	Landâ€use and isolation interact to affect wetland plant assemblages. Ecography, 2010, 33, 461-470.	4.5	27
27	Estimating ecological production from biomass. Ecosphere, 2015, 6, 1-31.	2.2	26
28	Ranching practices interactively affect soil nutrients in subtropical wetlands. Agriculture, Ecosystems and Environment, 2018, 254, 130-137.	5.3	21
29	Red herring or low illumination? The peninsula effect revisited. Journal of Biogeography, 2008, 35, 2128-2137.	3.0	18
30	Intense ranchland management tips the balance of regional and local factors affecting wetland community structure. Agriculture, Ecosystems and Environment, 2015, 212, 207-244.	5.3	18
31	Response of a winter plankton food web to simazine. Environmental Toxicology and Chemistry, 1990, 9, 693-705.	4.3	16
32	Tradeâ€offs and synergies in a paymentâ€forâ€ecosystem services program on ranchlands in the Everglades headwaters. Ecosphere, 2019, 10, e02728.	2.2	16
33	GIS, SINKS, FILL, and disappearing wetlands. , 2006, , .		14
34	Pasture management, grazing, and fire interact to determine wetland provisioning in a subtropical agroecosystem. Ecosphere, 2020, 11, e03209.	2.2	13
35	General allometric scaling of net primary production agrees with plant adaptive strategy theory and has tipping points. Journal of Ecology, 2017, 105, 1094-1104.	4.0	11
36	Dispersal and local environment affect the spread of an invasive apple snail (Pomacea maculata) in Florida, USA. Biological Invasions, 2017, 19, 2647-2661.	2.4	11

DAVID G JENKINS

#	Article	IF	CITATIONS
37	Land management practices interactively affect wetland beetle ecological and phylogenetic community structure. Ecological Applications, 2015, 25, 891-900.	3.8	10
38	Do Similar Communities Develop in Similar Sites? A Test with Zooplankton Structure and Function. Ecological Monographs, 1998, 68, 421.	5.4	10
39	Microbes as a test of biogeographic principles. , 2011, , 309-323.		9
40	Reproductive failure of a longâ€lived wetland tree in urban lands and managed forests. Journal of Applied Ecology, 2013, 50, 25-33.	4.0	9
41	Comparison of processes regulating zooplankton assemblages in new freshwater pools. , 1998, , 207-214.		9
42	Title is missing!. , 2000, 34, 91-99.		8
43	Are tiny subterranean ants top predators affecting aboveground ant communities?. Ecology, 2020, 101, e03084.	3.2	8
44	Global human "predation―on plant growth and biomass. Global Ecology and Biogeography, 2020, 29, 1052-1064.	5.8	7
45	Lakes and rivers as microcosms, version 2.0. Journal of Limnology, 2014, 73, .	1.1	4
46	Indicator-species and coarse-filter approaches in conservation appear insufficient alone. Global Ecology and Conservation, 2021, 28, e01667.	2.1	2
47	A Critical Analysis of Illinois' Fish Mercury Monitoring Program, 1974–1998. Environmental Monitoring and Assessment, 2007, 131, 177-184.	2.7	0
48	Biogeography and predictors of wildlife killed on roads at peninsular Florida State Parks. Ecology and Evolution, 2021, 11, 9049-9061.	1.9	0
49	Multiple spatial scales affect direct and indirect interactions between a non-native and a native species. Plant Ecology, 2021, 222, 1335.	1.6	0