Simo Olavi Pehkonen

List of Publications by Citations

Source: https://exaly.com/author-pdf/2568385/simo-olavi-pehkonen-publications-by-citations.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

92 5,779 46 75 g-index

92 6,217 6 avg, IF 5.83

ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
92	The chemistry of atmospheric mercury: a review. <i>Atmospheric Environment</i> , 1999 , 33, 2067-2079	5.3	456
91	Photocatalytic oxidation of arsenic(III): evidence of hydroxyl radicals. <i>Environmental Science & Environmental Science & Technology</i> , 2005 , 39, 1827-34	10.3	259
90	Scientific uncertainties in atmospheric mercury models I: Model science evaluation. <i>Atmospheric Environment</i> , 2006 , 40, 2911-2928	5.3	206
89	Lysozyme-coupled poly(poly(ethylene glycol) methacrylate)-stainless steel hybrids and their antifouling and antibacterial surfaces. <i>Langmuir</i> , 2011 , 27, 2761-74	4	179
88	Microbiologically influenced corrosion of 304 stainless steel by aerobic Pseudomonas NCIMB 2021 bacteria: AFM and XPS study. <i>Colloids and Surfaces B: Biointerfaces</i> , 2007 , 59, 87-99	6	178
87	Superhydrophobic CuO nanoneedle-covered copper surfaces for anticorrosion. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 4374-4388	13	168
86	The influence of sulphate-reducing bacteria biofilm on the corrosion of stainless steel AISI 316. <i>Corrosion Science</i> , 2007 , 49, 2159-2176	6.8	167
85	Photoreduction of iron oxyhydroxides in the presence of important atmospheric organic compounds. <i>Environmental Science & Environmental Science & Envi</i>	10.3	162
84	The Degradation of Organophosphorus Pesticides in Natural Waters: A Critical Review. <i>Critical Reviews in Environmental Science and Technology</i> , 2002 , 32, 17-72	11.1	153
83	Superhydrophobic fluoropolymer-modified copper surface via surface graft polymerisation for corrosion protection. <i>Corrosion Science</i> , 2011 , 53, 2738-2747	6.8	148
82	Peracids in water treatment: A critical review. <i>Critical Reviews in Environmental Science and Technology</i> , 2017 , 47, 1-39	11.1	133
81	Photocatalytic inactivation of Gram-positive and Gram-negative bacteria using fluorescent light. <i>Journal of Photochemistry and Photobiology A: Chemistry</i> , 2007 , 186, 335-341	4.7	118
80	Surface characterization and corrosion behavior of 70/30 CuNi alloy in pristine and sulfide-containing simulated seawater. <i>Corrosion Science</i> , 2007 , 49, 1276-1304	6.8	117
79	Surface chemistry and corrosion behaviour of 304 stainless steel in simulated seawater containing inorganic sulphide and sulphate-reducing bacteria. <i>Corrosion Science</i> , 2013 , 74, 353-366	6.8	111
78	The influence of ionic strength, nutrients and pH on bacterial adhesion to metals. <i>Journal of Colloid and Interface Science</i> , 2008 , 321, 256-64	9.3	106
77	Aqueous free radical chemistry of mercury in the presence of iron oxides and ambient aerosol. <i>Atmospheric Environment</i> , 1997 , 31, 4125-4137	5.3	104
76	Redox chemistry of iron in fog and stratus clouds. <i>Journal of Geophysical Research</i> , 1993 , 98, 18423-184	434	104

(2009-1994)

75	Iron photochemistry of aqueous suspensions of ambient aerosol with added organic acids. <i>Geochimica Et Cosmochimica Acta</i> , 1994 , 58, 3271-3279	5.5	94
74	Nanostructured TiO2/CuO dual-coated copper meshes with superhydrophilic, underwater superoleophobic and self-cleaning properties for highly efficient oil/water separation. <i>Chemical Engineering Journal</i> , 2017 , 328, 497-510	14.7	86
73	Effects of ring substituents on the protective properties of self-assembled benzenethiols on copper. <i>Corrosion Science</i> , 2006 , 48, 840-862	6.8	86
72	Aqueous Photochemistry of Mercury with Organic Acids. <i>Journal of the Air and Waste Management Association</i> , 1998 , 48, 144-150	2.4	85
71	Determination of the oxidation states of iron in natural waters. A review. <i>Analyst, The</i> , 1995 , 120, 2655	5	85
70	Purification of phenol-contaminated water by adsorption with quaternized poly(dimethylaminopropyl methacrylamide)-grafted PVBC microspheres. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 4620-4636	13	81
69	The influence of the marine aerobic Pseudomonas strain on the corrosion of 70/30 Cu N i alloy. <i>Corrosion Science</i> , 2007 , 49, 4352-4385	6.8	81
68	Simultaneous spectrophotometric measurement of iron(II) and iron(III) in atmospheric water. <i>Environmental Science & Environmental Science & Environme</i>	10.3	80
67	Degradation of monomethylmercury chloride by hydroxyl radicals in simulated natural waters. <i>Water Research</i> , 2003 , 37, 2496-504	12.5	76
66	Kinetics and mechanisms of UV-photodegradation of chlorinated organics in the gas phase. <i>Water Research</i> , 2002 , 36, 4203-14	12.5	75
65	Force measurements of bacterial adhesion on metals using a cell probe atomic force microscope. Journal of Colloid and Interface Science, 2007 , 310, 661-9	9.3	74
64	Oxidation of diazinon by aqueous chlorine: kinetics, mechanisms, and product studies. <i>Journal of Agricultural and Food Chemistry</i> , 1999 , 47, 1760-6	5.7	73
63	Inorganic-organic hybrid coatings on stainless steel by layer-by-layer deposition and surface-initiated atom-transfer-radical polymerization for combating biocorrosion. <i>ACS Applied Materials & Discorrosion and </i>	9.5	71
62	Copper corrosion in mildly alkaline water with the disinfectant monochloramine. <i>Corrosion Science</i> , 2002 , 44, 2507-2528	6.8	71
61	Poly(methacrylic acid)-grafted chitosan microspheres via surface-initiated ATRP for enhanced removal of Cd(II) ions from aqueous solution. <i>Journal of Colloid and Interface Science</i> , 2013 , 405, 171-82	9.3	68
60	PVDF film tethered with RGD-click-poly(glycidyl methacrylate) brushes by combination of direct surface-initiated ATRP and click chemistry for improved cytocompatibility. <i>RSC Advances</i> , 2014 , 4, 105-1	1 ³ 7 ⁷	66
59	Antibacterial inorganic-organic hybrid coatings on stainless steel via consecutive surface-initiated atom transfer radical polymerization for biocorrosion prevention. <i>Langmuir</i> , 2010 , 26, 6728-36	4	66
58	AFM study of microbial colonization and its deleterious effect on 304 stainless steel by Pseudomonas NCIMB 2021 and Desulfovibrio desulfuricans in simulated seawater. <i>Corrosion Science</i> , 2009 , 51, 1372-1385	6.8	65

57	Scientific uncertainties in atmospheric mercury models II: Sensitivity analysis in the CONUS domain. <i>Atmospheric Environment</i> , 2007 , 41, 6544-6560	5.3	63
56	Grafting of antibacterial polymers on stainless steel via surface-initiated atom transfer radical polymerization for inhibiting biocorrosion by Desulfovibrio desulfuricans. <i>Biotechnology and Bioengineering</i> , 2009 , 103, 268-81	4.9	62
55	Measurements of Trace Metal (Fe, Cu, Mn, Cr) Oxidation States in Fog and Stratus Clouds. <i>Journal of the Air and Waste Management Association</i> , 1998 , 48, 128-143	2.4	59
54	Investigation of the Heterogeneously Catalyzed Hydrolysis of Organophosphorus Pesticides. Journal of Agricultural and Food Chemistry, 1998 , 46, 325-334	5.7	57
53	Oxidation of elemental mercury by aqueous chlorine (HOCl/OCl) Implications for tropospheric mercury chemistry. <i>Journal of Geophysical Research</i> , 1998 , 103, 28093-28102		57
52	Effect of replacing a hydroxyl group with a methyl group on arsenic (V) species adsorption on goethite (alpha-FeOOH). <i>Journal of Colloid and Interface Science</i> , 2007 , 306, 16-21	9.3	54
51	Enhancing antibacterial activity of surface-grafted chitosan with immobilized lysozyme on bioinspired stainless steel substrates. <i>Colloids and Surfaces B: Biointerfaces</i> , 2013 , 106, 11-21	6	49
50	Corrosion Behavior of Type 304 Stainless Steel in a Simulated Seawater-Based Medium in the Presence and Absence of Aerobic Pseudomonas NCIMB 2021 Bacteria. <i>Industrial & Amp; Engineering Chemistry Research</i> , 2008 , 47, 3008-3020	3.9	49
49	Aqueous phase reactions of mercury with free radicals and chlorine: Implications for atmospheric mercury chemistry. <i>Chemosphere</i> , 1999 , 38, 1253-1263	8.4	49
48	Two-phase model of mercury chemistry in the atmosphere. <i>Atmospheric Environment</i> , 1998 , 32, 2543-25	5 5 83	46
47	Evaluation of an Organic Corrosion Inhibitor on Abiotic Corrosion and Microbiologically Influenced Corrosion of Mild Steel. <i>Industrial & Engineering Chemistry Research</i> , 2007 , 46, 7117-7125	3.9	46
46	Oxidation of elemental mercury by aqueous bromine: atmospheric implications. <i>Atmospheric Environment</i> , 2004 , 38, 3675-3688	5.3	46
45	Photoreduction of iron oxyhydroxides and the photooxidation of halogenated acetic acids. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	43
44	Copper corrosion in distribution systems: evaluation of a homogeneous Cu2O film and a natural corrosion scale as corrosion inhibitors. <i>Corrosion Science</i> , 2000 , 42, 1801-1822	6.8	42
43	Biocorrosion Behavior of Titanium Oxide/Butoxide-Coated Stainless Steel. <i>Journal of the Electrochemical Society</i> , 2008 , 155, C196	3.9	40
42	Hydrolysis of Phorate Using Simulated Environmental Conditions: Rates, Mechanisms, and Product Analysis. <i>Journal of Agricultural and Food Chemistry</i> , 1998 , 46, 1192-1199	5.7	40
41	Light distribution field in catalyst suspensions within an annular photoreactor. <i>Chemical Engineering Science</i> , 2005 , 60, 5255-5268	4.4	39
40	Enhanced adsorption of Cu(II) ions on chitosan microspheres functionalized with polyethylenimine-conjugated poly(glycidyl methacrylate) brushes. <i>RSC Advances</i> , 2016 , 6, 78136-78150	3.7	38

(2009-2007)

39	Modification of Surface-Oxidized Copper Alloy by Coupling of Viologens for Inhibiting Microbiologically Influenced Corrosion. <i>Journal of the Electrochemical Society</i> , 2007 , 154, C645	3.9	38	
38	Poly(1-vinylimidazole) formation on copper surfaces via surface-initiated graft polymerization for corrosion protection. <i>Corrosion Science</i> , 2010 , 52, 1958-1968	6.8	37	
37	Photocatalytic Inactivation of Airborne Bacteria in a Continuous-Flow Reactor. <i>Industrial & Engineering Chemistry Research</i> , 2008 , 47, 7580-7585	3.9	36	
36	Surface Modification of Mild Steel with Thermally Cured Antibacterial Poly(vinylbenzyl chloride) B olyaniline Bilayers for Effective Protection against Sulfate Reducing Bacteria Induced Corrosion. <i>Industrial & Engineering Chemistry Research</i> , 2014 , 53, 12363-12378	3.9	33	
35	Evaluation of Three Different Lamp Emission Models Using Novel Application of Potassium Ferrioxalate Actinometry. <i>Industrial & Engineering Chemistry Research</i> , 2004 , 43, 948-955	3.9	33	
34	Experimental and computational studies of nitrogen doped Degussa P25 TiO2: application to visible-light driven photo-oxidation of As(III). <i>Catalysis Science and Technology</i> , 2012 , 2, 784	5.5	32	
33	Irreversible adsorption of methyl arsenic, arsenate, and phosphate onto goethite in arsenic and phosphate binary systems. <i>Journal of Colloid and Interface Science</i> , 2008 , 317, 35-43	9.3	32	
32	Biocorrosion of AISI 304 Stainless Steel by Desulfovibrio desulfuricans in Seawater. <i>Industrial & Engineering Chemistry Research</i> , 2008 , 47, 4703-4711	3.9	29	
31	Poly(4-vinylaniline)-Polyaniline Bilayer-Modified Stainless Steels for the Mitigation of Biocorrosion by Sulfate-Reducing Bacteria (SRB) in Seawater. <i>Industrial & Engineering Chemistry Research</i> , 2012 , 51, 14738-14751	3.9	28	
30	Minimal Invasiveness and Spectroscopy-Like Footprints for the Characterization of Heterogeneous Nanoscale Wetting in Ambient Conditions. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 20819-20825	3.8	27	
29	Polymers for Combating Biocorrosion. <i>Frontiers in Materials</i> , 2018 , 5,	4	26	
28	Click functionalization of poly(glycidyl methacrylate) microspheres with triazole-4-carboxylic acid for the effective adsorption of Pb(II) ions. <i>New Journal of Chemistry</i> , 2017 , 41, 6475-6488	3.6	25	
27	Chitosan microsphere scaffold tethered with RGD-conjugated poly(methacrylic acid) brushes as effective carriers for the endothelial cells. <i>Macromolecular Bioscience</i> , 2014 , 14, 1299-311	5.5	22	
26	Nitrogen-sensitized dual phase titanate/titania for visible-light driven phenol degradation. <i>Journal of Solid State Chemistry</i> , 2012 , 196, 518-527	3.3	21	
25	Antimicrobial surfaces of viologen-quaternized poly((2-dimethyl amino)ethyl methacrylate)-Si(100) hybrids from surface-initiated atom transfer radical polymerization. <i>Nanobiotechnology</i> , 2006 , 2, 123-1	134	21	
24	Pathways for the hydrolysis of phorate: product studies by (31)P NMR and GC-MS. <i>Journal of Agricultural and Food Chemistry</i> , 2000 , 48, 3013-7	5.7	20	
23	PVBC microspheres tethered with poly(3-sulfopropyl methacrylate) brushes for effective removal of Pb(II) ions from aqueous solution. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2016 , 498, 218-230	5.1	20	
22	Surface functionalization of Cu-Ni alloys via grafting of a bactericidal polymer for inhibiting biocorrosion by Desulfovibrio desulfuricans in anaerobic seawater. <i>Biofouling</i> , 2009 , 25, 109-25	3.3	18	

21	Hydrolysis of terbufos using simulated environmental conditions: rates, mechanisms, and product analysis. <i>Journal of Agricultural and Food Chemistry</i> , 2001 , 49, 5866-73	5.7	16
20	Phorate and Terbufos adsorption onto four tropical soils. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2004 , 240, 55-61	5.1	15
19	Poly(methacrylic acid)-graft-Ni3Si2O5(OH)4 multiwalled nanotubes as a novel nanosorbent for effective removal of copper(II) ions. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2016 , 502, 89-101	5.1	14
18	Studies on the magnetic water treatment in new pilot scale drinking water system and in old existing real-life water system. <i>Journal of Water Process Engineering</i> , 2016 , 9, 215-224	6.7	13
17	Magnetic nickel chrysotile nanotubes tethered with pH-sensitive poly(methacrylic acid) brushes for Cu(II) adsorption. <i>Journal of Molecular Liquids</i> , 2019 , 276, 611-623	6	13
16	Nanoscale investigation of photoinduced hydrophilicity variations in anatase and rutile nanopowders. <i>Langmuir</i> , 2013 , 29, 14512-8	4	12
15	Light Distribution Model for an Annular Reactor with a Cylindrical Reflector. <i>Industrial & Engineering Chemistry Research</i> , 2005 , 44, 3471-3479	3.9	12
14	PCL microspheres tailored with carboxylated poly(glycidyl methacrylate)-REDV conjugates as conducive microcarriers for endothelial cell expansion. <i>Journal of Materials Chemistry B</i> , 2015 , 3, 8670-	8 <i>6</i> 83	11
13	Mechanism of interactions between Hg(II) and Demeton S: an NMR study. <i>Environmental Science & Environmental Science</i>	10.3	11
12	Peracetic acid for conditioning of municipal wastewater sludge: Hygienization, odor control, and fertilizing properties. <i>Waste Management</i> , 2020 , 102, 371-379	8.6	11
11	Performance Evaluation of Light Emission Models in Light Attenuating Media. <i>Ozone: Science and Engineering</i> , 2005 , 27, 459-467	2.4	7
10	Proton-arsenic adsorption ratios and zeta potential measurements: implications for protonation of hydroxyls on the goethite surface. <i>Journal of Colloid and Interface Science</i> , 2007 , 315, 13-20	9.3	5
9	Quasi-quantitative determination of elemental relationships and surface properties in aqueous aluminium-silicon systems. <i>Journal of Water Process Engineering</i> , 2014 , 1, 54-63	6.7	3
8	Inhibition of Microbiologically Influenced Corrosion of Mild Steel and Stainless Steel 316 by an Organic Inhibitor. <i>Advanced Materials Research</i> , 2007 , 20-21, 379-382	0.5	3
7	Novel Antibacterial Coatings for Biofouling and Biocorrosion Inhibition. <i>Interface Science and Technology</i> , 2018 , 257-372	2.3	2
6	Study of the stability of aluminium trimeric clusters in aqueous solutions. <i>Molecular Simulation</i> , 2012 , 38, 934-943	2	1
5	Superhydrophobic Film Coatings for Corrosion Inhibition. Interface Science and Technology, 2018, 133-	18 <u>4</u> .3	1
4	Atmospheric Chemistry of Mercury 2011 , 111-153		

LIST OF PUBLICATIONS

3	The Influence of the Marine Aerobic Pseudomonas Strain on the Corrosion of 70/30 Cu-Ni Alloy. <i>ECS Transactions</i> , 2006 , 2, 159-192	1
2	Oxidation of elemental mercury by aqueous bromine: atmospheric implications. <i>Atmospheric Environment</i> , 2004 , 38, 3675-3675	5.3
1	Conducting Polymer Coatings as Effective Barrier to Corrosion. <i>Interface Science and Technology</i> , 2018 , 23-61	2.3