Andrew V Biankin

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/2568213/andrew-v-biankin-publications-by-year.pdf

Version: 2024-04-25

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

62 26,947 164 172 g-index h-index citations papers 6.12 33,018 185 11.3 L-index ext. citations avg, IF ext. papers

#	Paper	IF	Citations
172	ICGC-ARGO precision medicine: familial matters in pancreatic cancer <i>Lancet Oncology, The</i> , 2022 , 23, 25-26	21.7	2
171	ICGC-ARGO precision medicine: targeted therapy according to longitudinal assessment of tumour heterogeneity in colorectal cancer <i>Lancet Oncology, The</i> , 2022 , 23, 463-464	21.7	О
170	Modulation of pancreatic cancer cell sensitivity to FOLFIRINOX through microRNA-mediated regulation of DNA damage. <i>Nature Communications</i> , 2021 , 12, 6738	17.4	1
169	ROR1 and ROR2 expression in pancreatic cancer. <i>BMC Cancer</i> , 2021 , 21, 1199	4.8	0
168	Determinants of anti-PD-1 response and resistance in clear cell renal cell carcinoma. <i>Cancer Cell</i> , 2021 , 39, 1497-1518.e11	24.3	14
167	Structural Variants at the Loci are a Common Source of Homologous Repair Deficiency in High-grade Serous Ovarian Carcinoma. <i>Clinical Cancer Research</i> , 2021 , 27, 3201-3214	12.9	1
166	Targeting DNA Damage Response and Replication Stress in Pancreatic Cancer. <i>Gastroenterology</i> , 2021 , 160, 362-377.e13	13.3	32
165	Molecular Subtyping of Pancreatic Cancer 2021 , 305-319		
164	DNA methylation patterns identify subgroups of pancreatic neuroendocrine tumors with clinical association. <i>Communications Biology</i> , 2021 , 4, 155	6.7	11
163	Muscle-Derived Cytokines Reduce Growth, Viability and Migratory Activity of Pancreatic Cancer Cells. <i>Cancers</i> , 2021 , 13,	6.6	2
162	Homologous Recombination Deficiency in Pancreatic Cancer: A Systematic Review and Prevalence Meta-Analysis. <i>Journal of Clinical Oncology</i> , 2021 , 39, 2617-2631	2.2	15
161	Impact of COVID-19 on Pancreatic Cancer Research and the Path Forward. <i>Gastroenterology</i> , 2021 , 161, 1758-1763	13.3	2
160	Cancer Biomarkers in the era of precision oncology: Addressing the needs of patients and health systems. <i>Seminars in Cancer Biology</i> , 2021 ,	12.7	3
159	Genomic and Molecular Analyses Identify Molecular Subtypes of Pancreatic Cancer Recurrence. <i>Gastroenterology</i> , 2021 ,	13.3	1
158	COVID-19 provides an opportunity to transform cancer research. <i>Cancer Cell</i> , 2021 , 39, 1169-1170	24.3	O
157	Intravital imaging technology guides FAK-mediated priming in pancreatic cancer precision medicine according to Merlin status. <i>Science Advances</i> , 2021 , 7, eabh0363	14.3	5
156	FAK regulates IL-33 expression by controlling chromatin accessibility at c-Jun motifs. <i>Scientific Reports</i> , 2021 , 11, 229	4.9	3

155	Molecular Subtyping and Precision Medicine for Pancreatic Cancer. <i>Journal of Clinical Medicine</i> , 2021 , 10,	5.1	10	
154	Defining the clinical genomic landscape for real-world precision oncology. <i>Genomics</i> , 2020 , 112, 5324-53	340;	4	
153	HNF4A and GATA6 Loss Reveals Therapeutically Actionable Subtypes in Pancreatic Cancer. <i>Cell Reports</i> , 2020 , 31, 107625	10.6	34	
152	Altered RNA Splicing by Mutant p53 Activates Oncogenic RAS Signaling in Pancreatic Cancer. <i>Cancer Cell</i> , 2020 , 38, 198-211.e8	24.3	38	
151	An unbiased high-throughput drug screen reveals a potential therapeutic vulnerability in the most lethal molecular subtype of pancreatic cancer. <i>Molecular Oncology</i> , 2020 , 14, 1800-1816	7.9	4	
150	Repression of the Type I Interferon Pathway Underlies MYC- and KRAS-Dependent Evasion of NK and B Cells in Pancreatic Ductal Adenocarcinoma. <i>Cancer Discovery</i> , 2020 , 10, 872-887	24.4	42	
149	Precision Oncology in Surgery: Patient Selection for Operable Pancreatic Cancer. <i>Annals of Surgery</i> , 2020 , 272, 366-376	7.8	24	
148	Epithelial NOTCH Signaling Rewires the Tumor Microenvironment of Colorectal Cancer to Drive Poor-Prognosis Subtypes and Metastasis. <i>Cancer Cell</i> , 2019 , 36, 319-336.e7	24.3	135	
147	Prolactin Promotes Fibrosis and Pancreatic Cancer Progression. Cancer Research, 2019, 79, 5316-5327	10.1	19	
146	Feasibility and clinical utility of endoscopic ultrasound guided biopsy of pancreatic cancer for next-generation molecular profiling. <i>Chinese Clinical Oncology</i> , 2019 , 8, 16	2.3	15	
145	Molecular subtypes of pancreatic cancer. <i>Nature Reviews Gastroenterology and Hepatology</i> , 2019 , 16, 207-220	24.2	281	
144	Macrophage-Released Pyrimidines Inhibit Gemcitabine Therapy in Pancreatic Cancer. <i>Cell Metabolism</i> , 2019 , 29, 1390-1399.e6	24.6	164	
143	CSF1R Macrophages Sustain Pancreatic Tumor Growth through T Cell Suppression and Maintenance of Key Gene Programs that Define the Squamous Subtype. <i>Cell Reports</i> , 2018 , 23, 1448-14	60.6	105	
142	Chemotherapy and radiotherapy for advanced pancreatic cancer. <i>The Cochrane Library</i> , 2018 , 3, CD0110)4 <u>,42</u>	48	
141	Tailored first-line and second-line CDK4-targeting treatment combinations in mouse models of pancreatic cancer. <i>Gut</i> , 2018 , 67, 2142-2155	19.2	71	
140	Exome-Wide Association Study of Pancreatic Cancer Risk. <i>Gastroenterology</i> , 2018 , 154, 719-722.e3	13.3	27	
				١
139	Rucaparib Monotherapy in Patients With Pancreatic Cancer and a Known Deleterious Mutation. JCO Precision Oncology, 2018 , 2018,	3.6	78	

137	Targeted therapies in the management of locally advanced and metastatic pancreatic cancer: a systematic review. <i>Oncotarget</i> , 2018 , 9, 21613-21627	3.3	29
136	ROBO2 is a stroma suppressor gene in the pancreas and acts via TGF-Bignalling. <i>Nature Communications</i> , 2018 , 9, 5083	17.4	29
135	Interrogating open issues in cancer precision medicine with patient-derived xenografts. <i>Nature Reviews Cancer</i> , 2017 , 17, 254-268	31.3	369
134	An integrative approach unveils FOSL1 as an oncogene vulnerability in KRAS-driven lung and pancreatic cancer. <i>Nature Communications</i> , 2017 , 8, 14294	17.4	73
133	The road to precision oncology. <i>Nature Genetics</i> , 2017 , 49, 320-321	36.3	10
132	GATA6 regulates EMT and tumour dissemination, and is a marker of response to adjuvant chemotherapy in pancreatic cancer. <i>Gut</i> , 2017 , 66, 1665-1676	19.2	125
131	Whole-genome landscape of pancreatic neuroendocrine tumours. <i>Nature</i> , 2017 , 543, 65-71	50.4	482
130	Recurrent noncoding regulatory mutations in pancreatic ductal adenocarcinoma. <i>Nature Genetics</i> , 2017 , 49, 825-833	36.3	41
129	Mitochondrial mutations and metabolic adaptation in pancreatic cancer. <i>Cancer & Metabolism</i> , 2017 , 5, 2	5.4	40
128	Transient tissue priming via ROCK inhibition uncouples pancreatic cancer progression, sensitivity to chemotherapy, and metastasis. <i>Science Translational Medicine</i> , 2017 , 9,	17.5	159
127	Pancreatic Cancer Genomes: Implications for Clinical Management and Therapeutic Development. <i>Clinical Cancer Research</i> , 2017 , 23, 1638-1646	12.9	92
126	BRCA2 secondary mutation-mediated resistance to platinum and PARP inhibitor-based therapy in pancreatic cancer. <i>British Journal of Cancer</i> , 2017 , 116, 1021-1026	8.7	48
125	The Driver Mutational Landscape of Ovarian Squamous Cell Carcinomas Arising in Mature Cystic Teratoma. <i>Clinical Cancer Research</i> , 2017 , 23, 7633-7640	12.9	13
124	Integrated Genomic Characterization of Pancreatic Ductal Adenocarcinoma. <i>Cancer Cell</i> , 2017 , 32, 185-	-2 <u>03</u> , e 1	3 896
123	Lost in translation: returning germline genetic results in genome-scale cancer research. <i>Genome Medicine</i> , 2017 , 9, 41	14.4	18
122	Hypermutation In Pancreatic Cancer. <i>Gastroenterology</i> , 2017 , 152, 68-74.e2	13.3	130
121	MutY-Homolog (MYH) inhibition reduces pancreatic cancer cell growth and increases chemosensitivity. <i>Oncotarget</i> , 2017 , 8, 9216-9229	3.3	9
120	Exploiting the neoantigen landscape for immunotherapy of pancreatic ductal adenocarcinoma. <i>Scientific Reports</i> , 2016 , 6, 35848	4.9	87

119	Pancreatic cancer. <i>Nature Reviews Disease Primers</i> , 2016 , 2, 16022	51.1	838
118	Resolution of Novel Pancreatic Ductal Adenocarcinoma Subtypes by Global Phosphotyrosine Profiling. <i>Molecular and Cellular Proteomics</i> , 2016 , 15, 2671-85	7.6	25
117	CXCR2 Inhibition Profoundly Suppresses Metastases and Augments Immunotherapy in Pancreatic Ductal Adenocarcinoma. <i>Cancer Cell</i> , 2016 , 29, 832-845	24.3	442
116	Hepatocyte growth factor inhibition: a novel therapeutic approach in pancreatic cancer. <i>British Journal of Cancer</i> , 2016 , 114, 269-80	8.7	66
115	Ampullary Cancers Harbor ELF3 Tumor Suppressor Gene Mutations and Exhibit Frequent WNT Dysregulation. <i>Cell Reports</i> , 2016 , 14, 907-919	10.6	75
114	Genomic analyses identify molecular subtypes of pancreatic cancer. <i>Nature</i> , 2016 , 531, 47-52	50.4	1785
113	International Association of Pancreatology (IAP)/European Pancreatic Club (EPC) consensus review of guidelines for the treatment of pancreatic cancer. <i>Pancreatology</i> , 2016 , 16, 14-27	3.8	49
112	Sirtuin 1 stimulates the proliferation and the expression of glycolysis genes in pancreatic neoplastic lesions. <i>Oncotarget</i> , 2016 , 7, 74768-74778	3.3	17
111	Molecular Diagnostics: Translation from Discovery to Clinical Practice 2016 , 1-26		
110	PDX1 dynamically regulates pancreatic ductal adenocarcinoma initiation and maintenance. <i>Genes and Development</i> , 2016 , 30, 2669-2683	12.6	62
109	Diagnosis and Management of Hereditary Pancreatic Cancer. <i>Recent Results in Cancer Research</i> , 2016 , 205, 61-83	1.5	1
108	Whole genomes redefine the mutational landscape of pancreatic cancer. <i>Nature</i> , 2015 , 518, 495-501	50.4	1579
107	New RAS-mutant pancreatic adenocarcinoma with combined BRAF and MEK inhibition for metastatic melanoma. <i>Journal of Clinical Oncology</i> , 2015 , 33, e52-6	2.2	25
106	Precision Medicine for Advanced Pancreas Cancer: The Individualized Molecular Pancreatic Cancer Therapy (IMPaCT) Trial. <i>Clinical Cancer Research</i> , 2015 , 21, 2029-37	12.9	171
105	The pseudokinase SgK223 promotes invasion of pancreatic ductal epithelial cells through JAK1/Stat3 signaling. <i>Molecular Cancer</i> , 2015 , 14, 139	42.1	29
104	Second-line treatment in inoperable pancreatic adenocarcinoma: A systematic review and synthesis of all clinical trials. <i>Critical Reviews in Oncology/Hematology</i> , 2015 , 96, 483-97	7	32
103	Subtyping Pancreatic Cancer. Cancer Cell, 2015, 28, 411-413	24.3	31
102	Patient-centric trials for therapeutic development in precision oncology. <i>Nature</i> , 2015 , 526, 361-70	50.4	199

101	Cancer Genetics and Implications for Clinical Management. <i>Surgical Clinics of North America</i> , 2015 , 95, 919-34	4	5
100	SOX9 regulates ERBB signalling in pancreatic cancer development. <i>Gut</i> , 2015 , 64, 1790-9	19.2	57
99	Rho-associated kinase signalling and the cancer microenvironment: novel biological implications and therapeutic opportunities. <i>Expert Reviews in Molecular Medicine</i> , 2015 , 17, e17	6.7	33
98	A Revised Classification System and Recommendations From the Baltimore Consensus Meeting for Neoplastic Precursor Lesions in the Pancreas. <i>American Journal of Surgical Pathology</i> , 2015 , 39, 1730-41	6.7	423
97	Targeting the LOX/hypoxia axis reverses many of the features that make pancreatic cancer deadly: inhibition of LOX abrogates metastasis and enhances drug efficacy. <i>EMBO Molecular Medicine</i> , 2015 , 7, 1063-76	12	172
96	Pancreas-Specific Sirt1-Deficiency in Mice Compromises Beta-Cell Function without Development of Hyperglycemia. <i>PLoS ONE</i> , 2015 , 10, e0128012	3.7	19
95	The epigenetic agents suberoylanilide hydroxamic acid and 5-AZA-2Sdeoxycytidine decrease cell proliferation, induce cell death and delay the growth of MiaPaCa2 pancreatic cancer cells in vivo. <i>International Journal of Oncology</i> , 2015 , 46, 2223-30	4.4	14
94	The Challenges of Precision Oncology Drug Development and Implementation. <i>Public Health Genomics</i> , 2015 , 18, 338-48	1.9	13
93	Pancreatic cancer genomics: where can the science take us?. Clinical Genetics, 2015, 88, 213-9	4	10
92	III-tubulin: a novel mediator of chemoresistance and metastases in pancreatic cancer. <i>Oncotarget</i> , 2015 , 6, 2235-49	3.3	48
91	Mining the genomes of exceptional responders. <i>Nature Reviews Cancer</i> , 2014 , 14, 291-2	31.3	35
90	Mutant p53 drives pancreatic cancer metastasis through cell-autonomous PDGF receptor I signaling. <i>Cell</i> , 2014 , 157, 382-394	56.2	325
89	Patient-derived xenograft models: an emerging platform for translational cancer research. <i>Cancer Discovery</i> , 2014 , 4, 998-1013	24.4	1018
88	Returning individual research results for genome sequences of pancreatic cancer. <i>Genome Medicine</i> , 2014 , 6, 42	14.4	18
87	Pancreatic cancer genomics. Current Opinion in Genetics and Development, 2014, 24, 74-81	4.9	40
86	A workflow to increase verification rate of chromosomal structural rearrangements using high-throughput next-generation sequencing. <i>BioTechniques</i> , 2014 , 57, 31-8	2.5	
85	Stratified Medicine for Pancreatic Cancer 2014 , 807-814		
84	Clinical and pathologic features of familial pancreatic cancer. <i>Cancer</i> , 2014 , 120, 3669-75	6.4	38

83	Genome-wide DNA methylation patterns in pancreatic ductal adenocarcinoma reveal epigenetic deregulation of SLIT-ROBO, ITGA2 and MET signaling. <i>International Journal of Cancer</i> , 2014 , 135, 1110-8	₃ 7.5	149
82	Discrepancies in cancer genomic sequencing highlight opportunities for driver mutation discovery. <i>Cancer Research</i> , 2014 , 74, 6390-6396	10.1	26
81	Targeting mTOR dependency in pancreatic cancer. <i>Gut</i> , 2014 , 63, 1481-9	19.2	93
80	Gemcitabine and CHK1 inhibition potentiate EGFR-directed radioimmunotherapy against pancreatic ductal adenocarcinoma. <i>Clinical Cancer Research</i> , 2014 , 20, 3187-97	12.9	30
79	Histone deacetylase 2 and N-Myc reduce p53 protein phosphorylation at serine 46 by repressing gene transcription of tumor protein 53-induced nuclear protein 1. <i>Oncotarget</i> , 2014 , 5, 4257-68	3.3	24
78	Personalising pancreas cancer treatment: When tissue is the issue. <i>World Journal of Gastroenterology</i> , 2014 , 20, 7849-63	5.6	18
77	Understanding pancreatic cancer genomes. Journal of Hepato-Biliary-Pancreatic Sciences, 2013, 20, 549-	- 5 <u>6</u> 8	26
76	Signatures of mutational processes in human cancer. <i>Nature</i> , 2013 , 500, 415-21	50.4	5895
75	Clinical and molecular characterization of HER2 amplified-pancreatic cancer. <i>Genome Medicine</i> , 2013 , 5, 78	14.4	82
74	Novel cancer drivers: mining the kinome. <i>Genome Medicine</i> , 2013 , 5, 19	14.4	2
73	Histomolecular phenotypes and outcome in adenocarcinoma of the ampulla of vater. <i>Journal of Clinical Oncology</i> , 2013 , 31, 1348-56	2.2	112
72	Neuropilin-2 promotes extravasation and metastasis by interacting with endothelial B integrin. <i>Cancer Research</i> , 2013 , 73, 4579-4590	10.1	65
71	BCL-2 hypermethylation is a potential biomarker of sensitivity to antimitotic chemotherapy in endocrine-resistant breast cancer. <i>Molecular Cancer Therapeutics</i> , 2013 , 12, 1874-85	6.1	36
70	Sirtuin-1 regulates acinar-to-ductal metaplasia and supports cancer cell viability in pancreatic cancer. <i>Cancer Research</i> , 2013 , 73, 2357-67	10.1	48
69	Reply to G.F. Arroyo. <i>Journal of Clinical Oncology</i> , 2013 , 31, 3843-4	2.2	
68	Somatic point mutation calling in low cellularity tumors. <i>PLoS ONE</i> , 2013 , 8, e74380	3.7	49
67	Molecular pathways in colorectal cancer. <i>Journal of Gastroenterology and Hepatology (Australia</i>), 2012 , 27, 1423-31	4	151
66	Factors influencing intention to undergo whole genome screening in future healthcare: a single-blind parallel-group randomised trial. <i>Preventive Medicine</i> , 2012 , 55, 514-20	4.3	62

65	RON is not a prognostic marker for resectable pancreatic cancer. <i>BMC Cancer</i> , 2012 , 12, 395	4.8	16
64	Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes. <i>Nature</i> , 2012 , 491, 399	-45054	1427
63	PINA v2.0: mining interactome modules. <i>Nucleic Acids Research</i> , 2012 , 40, D862-5	20.1	267
62	The deubiquitinase USP9X suppresses pancreatic ductal adenocarcinoma. <i>Nature</i> , 2012 , 486, 266-70	50.4	253
61	Sleeping Beauty mutagenesis reveals cooperating mutations and pathways in pancreatic adenocarcinoma. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2012 , 109, 5934-41	11.5	179
60	qpure: A tool to estimate tumor cellularity from genome-wide single-nucleotide polymorphism profiles. <i>PLoS ONE</i> , 2012 , 7, e45835	3.7	80
59	Adult cardiac-resident MSC-like stem cells with a proepicardial origin. Cell Stem Cell, 2011, 9, 527-40	18	313
58	Recruitment and activation of pancreatic stellate cells from the bone marrow in pancreatic cancer: a model of tumor-host interaction. <i>PLoS ONE</i> , 2011 , 6, e26088	3.7	48
57	Retinoid signaling in pancreatic cancer, injury and regeneration. <i>PLoS ONE</i> , 2011 , 6, e29075	3.7	12
56	Precursor lesions in pancreatic cancer: morphological and molecular pathology. <i>Pathology</i> , 2011 , 43, 183-200	1.6	48
55	Clinical and immunohistochemical features of 34 solid pseudopapillary tumors of the pancreas. Journal of Gastroenterology and Hepatology (Australia), 2011 , 26, 267-74	4	43
54	LMO4 expression in squamous cell carcinoma of the anterior tongue. <i>Histopathology</i> , 2011 , 58, 477-80	7.3	8
53	Long term nutritional status and quality of life following major upper gastrointestinal surgery - a cross-sectional study. <i>Clinical Nutrition</i> , 2011 , 30, 774-9	5.9	45
52	Preclinical strategies to define predictive biomarkers for therapeutically relevant cancer subtypes. <i>Human Genetics</i> , 2011 , 130, 93-101	6.3	12
51	Somatic variation and cancer: therapies lost in the mix. <i>Human Genetics</i> , 2011 , 130, 79-91	6.3	34
50	SIRT1 promotes N-Myc oncogenesis through a positive feedback loop involving the effects of MKP3 and ERK on N-Myc protein stability. <i>PLoS Genetics</i> , 2011 , 7, e1002135	6	117
49	International network of cancer genome projects. <i>Nature</i> , 2010 , 464, 993-8	50.4	1613
48	Tyrosine phosphorylation profiling reveals the signaling network characteristics of Basal breast cancer cells. <i>Cancer Research</i> , 2010 , 70, 9391-401	10.1	143

47	Plexiform angiomyxoid myofibroblastic tumour of the stomach: a case report. <i>Pathology</i> , 2010 , 42, 581-	- 3 1.6	14
46	Role of pancreatic stellate cells in pancreatic cancer metastasis. <i>American Journal of Pathology</i> , 2010 , 177, 2585-96	5.8	257
45	Defining research priorities for pancreatic cancer in Australia: results of a consensus development process. <i>Cancer Causes and Control</i> , 2010 , 21, 729-36	2.8	19
44	Loss of STARD10 expression identifies a group of poor prognosis breast cancers independent of HER2/Neu and triple negative status. <i>International Journal of Cancer</i> , 2010 , 126, 1445-53	7.5	11
43	Hypoxia-inducible factor-1alpha regulates beta cell function in mouse and human islets. <i>Journal of Clinical Investigation</i> , 2010 , 120, 2171-83	15.9	154
42	Synoptic reporting improves histopathological assessment of pancreatic resection specimens. <i>Pathology</i> , 2009 , 41, 161-7	1.6	79
41	Margin clearance and outcome in resected pancreatic cancer. Journal of Clinical Oncology, 2009, 27, 285	5 <u>56</u> 2	241
40	Surgical therapy for gastrointestinal stromal tumours of the upper gastrointestinal tract. <i>Journal of Gastrointestinal Surgery</i> , 2009 , 13, 1220-5	3.3	21
39	Taking optical biopsies with confocal endomicroscopy. <i>Journal of Gastroenterology and Hepatology</i> (Australia), 2009 , 24, 1701-3	4	4
38	Giant inguinal hernia containing right colon repaired using the prolene hernia system. <i>ANZ Journal of Surgery</i> , 2009 , 79, 92-3	1	2
37	Role of endoscopic ultrasound in pancreatic cancer. <i>Expert Review of Gastroenterology and Hepatology</i> , 2009 , 3, 293-303	4.2	8
36	Expression of S100A2 calcium-binding protein predicts response to pancreatectomy for pancreatic cancer. <i>Gastroenterology</i> , 2009 , 137, 558-68, 568.e1-11	13.3	62
35	Real time intraoperative confocal laser microscopy-guided surgery. <i>Annals of Surgery</i> , 2009 , 249, 735-7	7.8	22
34	Abdominal shotgun wound with pellet embolization leading to bilateral lower limb amputation: case report and review of the literature of missile emboli over the past 10 years. <i>Journal of Trauma</i> , 2009 , 67, E202-8		11
33	Messina: a novel analysis tool to identify biologically relevant molecules in disease. <i>PLoS ONE</i> , 2009 , 4, e5337	3.7	5
32	Management of Nutritional Issues After Major Pancreatic Resections 2009 , 487-506		
31	Improving outcomes for operable pancreatic cancer: is access to safer surgery the problem?. <i>Journal of Gastroenterology and Hepatology (Australia)</i> , 2008 , 23, 1036-45	4	25
30	Individualizing therapy for pancreatic cancer. <i>Journal of Gastroenterology and Hepatology (Australia)</i> , 2008 , 23, 1779-82	4	5

29	Role of endoscopic ultrasound in the management of pancreatic lesions. <i>ANZ Journal of Surgery</i> , 2008 , 78, 315-6; author reply 316-7	1	1
28	Stabilization of beta-catenin induces pancreas tumor formation. <i>Gastroenterology</i> , 2008 , 135, 1288-300	13.3	126
27	In vivo confocal endomicroscopy in the diagnosis and evaluation of celiac disease. <i>Gastroenterology</i> , 2008 , 135, 1870-6	13.3	86
26	The estrogen and c-Myc target gene HSPC111 is over-expressed in breast cancer and associated with poor patient outcome. <i>Breast Cancer Research</i> , 2008 , 10, R28	8.3	24
25	Pancreatic anomaly with multiple endocrine neoplasia type 1: a case of pancreas divisum and hemosuccus pancreaticus (santorinirrhage). <i>Pancreas</i> , 2008 , 36, 314-5	2.6	4
24	Pathology and Molecular Biology of Intraductal Papillary Mucinous Neoplasms 2008 , 53-64		
23	Common activation of canonical Wnt signaling in pancreatic adenocarcinoma. <i>PLoS ONE</i> , 2007 , 2, e1155	3.7	182
22	Low meprin alpha expression differentiates primary ovarian mucinous carcinoma from gastrointestinal cancers that commonly metastasise to the ovaries. <i>Journal of Clinical Pathology</i> , 2007 , 60, 622-6	3.9	16
21	A histological survey of green fluorescent protein expression in SgreenSmice: implications for stem cell research. <i>Pathology</i> , 2007 , 39, 247-51	1.6	14
20	A novel approach to high definition, high-contrast video capture in abdominal surgery. <i>Annals of Surgery</i> , 2007 , 245, 533-5	7.8	29
19	Cyclin E expression and outcome in pancreatic ductal adenocarcinoma. <i>Cancer Epidemiology Biomarkers and Prevention</i> , 2006 , 15, 1941-7	4	22
18	Aberrant neuropeptide Y and macrophage inhibitory cytokine-1 expression are early events in prostate cancer development and are associated with poor prognosis. <i>Cancer Epidemiology Biomarkers and Prevention</i> , 2006 , 15, 711-6	4	53
17	Pathology of genetically engineered mouse models of pancreatic exocrine cancer: consensus report and recommendations. <i>Cancer Research</i> , 2006 , 66, 95-106	10.1	357
16	Zinc-alpha2-glycoprotein expression as a predictor of metastatic prostate cancer following radical prostatectomy. <i>Journal of the National Cancer Institute</i> , 2006 , 98, 1420-4	9.7	76
15	Expression of the caudal-type homeodomain transcription factors CDX 1/2 and outcome in carcinomas of the ampulla of Vater. <i>Journal of Clinical Oncology</i> , 2005 , 23, 1811-8	2.2	46
14	Gene expression profiles in pancreatic intraepithelial neoplasia reflect the effects of Hedgehog signaling on pancreatic ductal epithelial cells. <i>Cancer Research</i> , 2005 , 65, 1619-26	10.1	199
13	An expression-based site of origin diagnostic method designed for clinical application to cancer of unknown origin. <i>Cancer Research</i> , 2005 , 65, 4031-40	10.1	178
12	Expression of HOXB2, a retinoic acid signaling target in pancreatic cancer and pancreatic intraepithelial neoplasia. <i>Clinical Cancer Research</i> , 2005 , 11, 3587-96	12.9	126

LIST OF PUBLICATIONS

11	Notch inhibits Ptf1 function and acinar cell differentiation in developing mouse and zebrafish pancreas. <i>Development (Cambridge)</i> , 2004 , 131, 4213-24	6.6	182
10	Differential requirement for ptf1a in endocrine and exocrine lineages of developing zebrafish pancreas. <i>Developmental Biology</i> , 2004 , 270, 474-86	3.1	63
9	Pancreatic intraepithelial neoplasia in association with intraductal papillary mucinous neoplasms of the pancreas: implications for disease progression and recurrence. <i>American Journal of Surgical Pathology</i> , 2004 , 28, 1184-92	6.7	79
8	An illustrated consensus on the classification of pancreatic intraepithelial neoplasia and intraductal papillary mucinous neoplasms. <i>American Journal of Surgical Pathology</i> , 2004 , 28, 977-87	6.7	836
7	Molecular pathogenesis of precursor lesions of pancreatic ductal adenocarcinoma. <i>Pathology</i> , 2003 , 35, 14-24	1.6	6
6	Molecular pathogenesis of precursor lesions of pancreatic ductal adenocarcinoma. <i>Pathology</i> , 2003 , 35, 14-24	1.6	38
5	DPC4/Smad4 expression and outcome in pancreatic ductal adenocarcinoma. <i>Journal of Clinical Oncology</i> , 2002 , 20, 4531-42	2.2	139
4	Endocrine cells of transitional mucosa adjacent to colonic adenocarcinoma. <i>ANZ Journal of Surgery</i> , 1995 , 65, 334-8	1	
3	Molecular profiling and therapeutic decision-making: the promise of personalized medicine929-935		
2	Macrophage Released Pyrimidines Inhibit Gemcitabine Therapy in Pancreatic Cancer		2
1	Tumor mutational landscape is a record of the pre-malignant state		8