Andrew V Biankin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2568213/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Signatures of mutational processes in human cancer. Nature, 2013, 500, 415-421.	13.7	8,060
2	Genomic analyses identify molecular subtypes of pancreatic cancer. Nature, 2016, 531, 47-52.	13.7	2,700
3	Whole genomes redefine the mutational landscape of pancreatic cancer. Nature, 2015, 518, 495-501.	13.7	2,132
4	International network of cancer genome projects. Nature, 2010, 464, 993-998.	13.7	2,114
5	Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes. Nature, 2012, 491, 399-405.	13.7	1,741
6	Integrated Genomic Characterization of Pancreatic Ductal Adenocarcinoma. Cancer Cell, 2017, 32, 185-203.e13.	7.7	1,428
7	Patient-Derived Xenograft Models: An Emerging Platform for Translational Cancer Research. Cancer Discovery, 2014, 4, 998-1013.	7.7	1,341
8	Pancreatic cancer. Nature Reviews Disease Primers, 2016, 2, 16022.	18.1	1,301
9	An Illustrated Consensus on the Classification of Pancreatic Intraepithelial Neoplasia and Intraductal Papillary Mucinous Neoplasms. American Journal of Surgical Pathology, 2004, 28, 977-987.	2.1	964
10	Whole-genome landscape of pancreatic neuroendocrine tumours. Nature, 2017, 543, 65-71.	13.7	716
11	CXCR2 Inhibition Profoundly Suppresses Metastases and Augments Immunotherapy in Pancreatic Ductal Adenocarcinoma. Cancer Cell, 2016, 29, 832-845.	7.7	645
12	A Revised Classification System and Recommendations From the Baltimore Consensus Meeting for Neoplastic Precursor Lesions in the Pancreas. American Journal of Surgical Pathology, 2015, 39, 1730-1741.	2.1	626
13	Molecular subtypes of pancreatic cancer. Nature Reviews Gastroenterology and Hepatology, 2019, 16, 207-220.	8.2	573
14	Interrogating open issues in cancer precision medicine with patient-derived xenografts. Nature Reviews Cancer, 2017, 17, 254-268.	12.8	527
15	Mutant p53 Drives Pancreatic Cancer Metastasis through Cell-Autonomous PDGF Receptor Î ² Signaling. Cell, 2014, 157, 382-394.	13.5	412
16	Pathology of Genetically Engineered Mouse Models of Pancreatic Exocrine Cancer: Consensus Report and Recommendations. Cancer Research, 2006, 66, 95-106.	0.4	401
17	Adult Cardiac-Resident MSC-like Stem Cells with a Proepicardial Origin. Cell Stem Cell, 2011, 9, 527-540.	5.2	358
18	PINA v2.0: mining interactome modules. Nucleic Acids Research, 2012, 40, D862-D865.	6.5	321

#	Article	IF	CITATIONS
19	Role of Pancreatic Stellate Cells in Pancreatic Cancer Metastasis. American Journal of Pathology, 2010, 177, 2585-2596.	1.9	304
20	The deubiquitinase USP9X suppresses pancreatic ductal adenocarcinoma. Nature, 2012, 486, 266-270.	13.7	297
21	Margin Clearance and Outcome in Resected Pancreatic Cancer. Journal of Clinical Oncology, 2009, 27, 2855-2862.	0.8	296
22	Macrophage-Released Pyrimidines Inhibit Gemcitabine Therapy in Pancreatic Cancer. Cell Metabolism, 2019, 29, 1390-1399.e6.	7.2	280
23	Epithelial NOTCH Signaling Rewires the Tumor Microenvironment of Colorectal Cancer to Drive Poor-Prognosis Subtypes and Metastasis. Cancer Cell, 2019, 36, 319-336.e7.	7.7	278
24	Patient-centric trials for therapeutic development in precision oncology. Nature, 2015, 526, 361-370.	13.7	251
25	Gene Expression Profiles in Pancreatic Intraepithelial Neoplasia Reflect the Effects of Hedgehog Signaling on Pancreatic Ductal Epithelial Cells. Cancer Research, 2005, 65, 1619-1626.	0.4	223
26	Targeting the <scp>LOX</scp> / <scp>hypoxia</scp> axis reverses many of the features that make pancreatic cancer deadly: inhibition of <scp>LOX</scp> abrogates metastasis and enhances drug efficacy. EMBO Molecular Medicine, 2015, 7, 1063-1076.	3.3	223
27	Molecular pathways in colorectal cancer. Journal of Gastroenterology and Hepatology (Australia), 2012, 27, 1423-1431.	1.4	214
28	GATA6 regulates EMT and tumour dissemination, and is a marker of response to adjuvant chemotherapy in pancreatic cancer. Gut, 2017, 66, 1665-1676.	6.1	212
29	Precision Medicine for Advanced Pancreas Cancer: The Individualized Molecular Pancreatic Cancer Therapy (IMPaCT) Trial. Clinical Cancer Research, 2015, 21, 2029-2037.	3.2	209
30	Transient tissue priming via ROCK inhibition uncouples pancreatic cancer progression, sensitivity to chemotherapy, and metastasis. Science Translational Medicine, 2017, 9, .	5.8	208
31	An Expression-Based Site of Origin Diagnostic Method Designed for Clinical Application to Cancer of Unknown Origin. Cancer Research, 2005, 65, 4031-4040.	0.4	206
32	<i>Sleeping Beauty</i> mutagenesis reveals cooperating mutations and pathways in pancreatic adenocarcinoma. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 5934-5941.	3.3	201
33	Common Activation of Canonical Wnt Signaling in Pancreatic Adenocarcinoma. PLoS ONE, 2007, 2, e1155.	1.1	199
34	Notch inhibits Ptf1 function and acinar cell differentiation in developing mouse and zebrafish pancreas. Development (Cambridge), 2004, 131, 4213-4224.	1.2	196
35	Genomeâ€wide DNA methylation patterns in pancreatic ductal adenocarcinoma reveal epigenetic deregulation of SLITâ€ROBO, ITGA2 and MET signaling. International Journal of Cancer, 2014, 135, 1110-1118.	2.3	192
36	Hypoxia-inducible factor-1α regulates β cell function in mouse and human islets. Journal of Clinical Investigation, 2010, 120, 2171-2183.	3.9	191

#	Article	IF	CITATIONS
37	Hypermutation In Pancreatic Cancer. Gastroenterology, 2017, 152, 68-74.e2.	0.6	174
38	CSF1R+ Macrophages Sustain Pancreatic Tumor Growth through T Cell Suppression and Maintenance of Key Gene Programs that Define the Squamous Subtype. Cell Reports, 2018, 23, 1448-1460.	2.9	169
39	Tyrosine Phosphorylation Profiling Reveals the Signaling Network Characteristics of Basal Breast Cancer Cells. Cancer Research, 2010, 70, 9391-9401.	0.4	165
40	DPC4/Smad4 Expression and Outcome in Pancreatic Ductal Adenocarcinoma. Journal of Clinical Oncology, 2002, 20, 4531-4542.	0.8	154
41	Histomolecular Phenotypes and Outcome in Adenocarcinoma of the Ampulla of Vater. Journal of Clinical Oncology, 2013, 31, 1348-1356.	0.8	142
42	Expression of HOXB2, a Retinoic Acid Signaling Target in Pancreatic Cancer and Pancreatic Intraepithelial Neoplasia. Clinical Cancer Research, 2005, 11, 3587-3596.	3.2	138
43	Stabilization of β-Catenin Induces Pancreas Tumor Formation. Gastroenterology, 2008, 135, 1288-1300.	0.6	136
44	SIRT1 Promotes N-Myc Oncogenesis through a Positive Feedback Loop Involving the Effects of MKP3 and ERK on N-Myc Protein Stability. PLoS Genetics, 2011, 7, e1002135.	1.5	136
45	Pancreatic Cancer Genomes: Implications for Clinical Management and Therapeutic Development. Clinical Cancer Research, 2017, 23, 1638-1646.	3.2	136
46	Rucaparib Monotherapy in Patients With Pancreatic Cancer and a Known Deleterious <i>BRCA</i> Mutation. JCO Precision Oncology, 2018, 2018, 1-15.	1.5	129
47	Exploiting the neoantigen landscape for immunotherapy of pancreatic ductal adenocarcinoma. Scientific Reports, 2016, 6, 35848.	1.6	127
48	Determinants of anti-PD-1 response and resistance in clear cell renal cell carcinoma. Cancer Cell, 2021, 39, 1497-1518.e11.	7.7	126
49	An integrative approach unveils FOSL1 as an oncogene vulnerability in KRAS-driven lung and pancreatic cancer. Nature Communications, 2017, 8, 14294.	5.8	119
50	Targeting mTOR dependency in pancreatic cancer. Gut, 2014, 63, 1481-1489.	6.1	107
51	Ampullary Cancers Harbor ELF3 Tumor Suppressor Gene Mutations and Exhibit Frequent WNT Dysregulation. Cell Reports, 2016, 14, 907-919.	2.9	107
52	Repression of the Type I Interferon Pathway Underlies MYC- and KRAS-Dependent Evasion of NK and B Cells in Pancreatic Ductal Adenocarcinoma. Cancer Discovery, 2020, 10, 872-887.	7.7	102
53	In Vivo Confocal Endomicroscopy in the Diagnosis and Evaluation of Celiac Disease. Gastroenterology, 2008, 135, 1870-1876.	0.6	100
54	Tailored first-line and second-line CDK4-targeting treatment combinations in mouse models of pancreatic cancer. Gut, 2018, 67, 2142-2155.	6.1	100

#	Article	IF	CITATIONS
55	Altered RNA Splicing by Mutant p53 Activates Oncogenic RAS Signaling in Pancreatic Cancer. Cancer Cell, 2020, 38, 198-211.e8.	7.7	99
56	Clinical and molecular characterization of HER2 amplified-pancreatic cancer. Genome Medicine, 2013, 5, 78.	3.6	97
57	Neuropilin-2 Promotes Extravasation and Metastasis by Interacting with Endothelial α5 Integrin. Cancer Research, 2013, 73, 4579-4590.	0.4	97
58	Synoptic reporting improves histopathological assessment of pancreatic resection specimens. Pathology, 2009, 41, 161-167.	0.3	94
59	Differential requirement for ptf1a in endocrine and exocrine lineages of developing zebrafish pancreas. Developmental Biology, 2004, 270, 474-486.	0.9	92
60	qpure: A Tool to Estimate Tumor Cellularity from Genome-Wide Single-Nucleotide Polymorphism Profiles. PLoS ONE, 2012, 7, e45835.	1.1	92
61	Pancreatic Intraepithelial Neoplasia in Association With Intraductal Papillary Mucinous Neoplasms of the Pancreas. American Journal of Surgical Pathology, 2004, 28, 1184-1192.	2.1	90
62	Targeting DNA Damage Response and Replication Stress in Pancreatic Cancer. Gastroenterology, 2021, 160, 362-377.e13.	0.6	90
63	Zinc-alpha2-glycoprotein Expression as a Predictor of Metastatic Prostate Cancer Following Radical Prostatectomy. Journal of the National Cancer Institute, 2006, 98, 1420-1424.	3.0	89
64	PDX1 dynamically regulates pancreatic ductal adenocarcinoma initiation and maintenance. Genes and Development, 2016, 30, 2669-2683.	2.7	88
65	Expression of S100A2 Calcium-Binding Protein Predicts Response to Pancreatectomy for Pancreatic Cancer. Gastroenterology, 2009, 137, 558-568.e11.	0.6	82
66	Hepatocyte growth factor inhibition: a novel therapeutic approach in pancreatic cancer. British Journal of Cancer, 2016, 114, 269-280.	2.9	81
67	International Association of Pancreatology (IAP)/European Pancreatic Club (EPC) consensus review of guidelines for the treatment of pancreatic cancer. Pancreatology, 2016, 16, 14-27.	0.5	81
68	Chemotherapy and radiotherapy for advanced pancreatic cancer. The Cochrane Library, 2018, 2018, CD011044.	1.5	80
69	HNF4A and GATA6 Loss Reveals Therapeutically Actionable Subtypes in Pancreatic Cancer. Cell Reports, 2020, 31, 107625.	2.9	78
70	SOX9 regulates ERBB signalling in pancreatic cancer development. Gut, 2015, 64, 1790-1799.	6.1	71
71	Factors influencing intention to undergo whole genome screening in future healthcare: A single-blind parallel-group randomised trial. Preventive Medicine, 2012, 55, 514-520.	1.6	68
72	Somatic Point Mutation Calling in Low Cellularity Tumors. PLoS ONE, 2013, 8, e74380.	1.1	67

#	Article	IF	CITATIONS
73	Precursor lesions in pancreatic cancer: morphological and molecular pathology. Pathology, 2011, 43, 183-200.	0.3	64
74	Homologous Recombination Deficiency in Pancreatic Cancer: A Systematic Review and Prevalence Meta-Analysis. Journal of Clinical Oncology, 2021, 39, 2617-2631.	0.8	63
75	Aberrant Neuropeptide Y and Macrophage Inhibitory Cytokine-1 Expression Are Early Events in Prostate Cancer Development and Are Associated with Poor Prognosis. Cancer Epidemiology Biomarkers and Prevention, 2006, 15, 711-716.	1.1	62
76	BRCA2 secondary mutation-mediated resistance to platinum and PARP inhibitor-based therapy in pancreatic cancer. British Journal of Cancer, 2017, 116, 1021-1026.	2.9	61
77	Sirtuin-1 Regulates Acinar-to-Ductal Metaplasia and Supports Cancer Cell Viability in Pancreatic Cancer. Cancer Research, 2013, 73, 2357-2367.	0.4	59
78	βIII-Tubulin: A novel mediator of chemoresistance and metastases in pancreatic cancer. Oncotarget, 2015, 6, 2235-2249.	0.8	57
79	Recruitment and Activation of Pancreatic Stellate Cells from the Bone Marrow in Pancreatic Cancer: A Model of Tumor-Host Interaction. PLoS ONE, 2011, 6, e26088.	1.1	55
80	Recurrent noncoding regulatory mutations in pancreatic ductal adenocarcinoma. Nature Genetics, 2017, 49, 825-833.	9.4	55
81	Clinical and immunohistochemical features of 34 solid pseudopapillary tumors of the pancreas. Journal of Gastroenterology and Hepatology (Australia), 2011, 26, 267-274.	1.4	53
82	Clinical and pathologic features of familial pancreatic cancer. Cancer, 2014, 120, 3669-3675.	2.0	53
83	Long term nutritional status and quality of life following major upper gastrointestinal surgery – A cross-sectional study. Clinical Nutrition, 2011, 30, 774-779.	2.3	52
84	Rho-associated kinase signalling and the cancer microenvironment: novel biological implications and therapeutic opportunities. Expert Reviews in Molecular Medicine, 2015, 17, e17.	1.6	51
85	Mitochondrial mutations and metabolic adaptation in pancreatic cancer. Cancer & Metabolism, 2017, 5, 2.	2.4	51
86	Expression of the Caudal-Type Homeodomain Transcription Factors CDX 1/2 and Outcome in Carcinomas of the Ampulla of Vater. Journal of Clinical Oncology, 2005, 23, 1811-1818.	0.8	50
87	Pancreatic cancer genomics. Current Opinion in Genetics and Development, 2014, 24, 74-81.	1.5	50
88	Precision Oncology in Surgery. Annals of Surgery, 2020, 272, 366-376.	2.1	48
89	BCL-2 Hypermethylation Is a Potential Biomarker of Sensitivity to Antimitotic Chemotherapy in Endocrine-Resistant Breast Cancer. Molecular Cancer Therapeutics, 2013, 12, 1874-1885.	1.9	45
90	The pseudokinase SgK223 promotes invasion of pancreatic ductal epithelial cells through JAK1/Stat3 signaling. Molecular Cancer, 2015, 14, 139.	7.9	44

#	Article	IF	CITATIONS
91	Molecular pathogenesis of precursor lesions of pancreatic ductal adenocarcinoma. Pathology, 2003, 35, 14-24.	0.3	42
92	Second-line treatment in inoperable pancreatic adenocarcinoma: A systematic review and synthesis of all clinical trials. Critical Reviews in Oncology/Hematology, 2015, 96, 483-497.	2.0	41
93	ROBO2 is a stroma suppressor gene in the pancreas and acts via TGF-β signalling. Nature Communications, 2018, 9, 5083.	5.8	41
94	Somatic variation and cancer: therapies lost in the mix. Human Genetics, 2011, 130, 79-91.	1.8	40
95	Targeted therapies in the management of locally advanced and metastatic pancreatic cancer: a systematic review. Oncotarget, 2018, 9, 21613-21627.	0.8	39
96	Mining the genomes of exceptional responders. Nature Reviews Cancer, 2014, 14, 291-292.	12.8	38
97	Subtyping Pancreatic Cancer. Cancer Cell, 2015, 28, 411-413.	7.7	38
98	Exome-Wide Association Study of Pancreatic Cancer Risk. Gastroenterology, 2018, 154, 719-722.e3.	0.6	38
99	Prolactin Promotes Fibrosis and Pancreatic Cancer Progression. Cancer Research, 2019, 79, 5316-5327.	0.4	36
100	The estrogen and c-Myc target gene HSPC111 is over-expressed in breast cancer and associated with poor patient outcome. Breast Cancer Research, 2008, 10, R28.	2.2	34
101	Molecular Subtyping and Precision Medicine for Pancreatic Cancer. Journal of Clinical Medicine, 2021, 10, 149.	1.0	34
102	Discrepancies in Cancer Genomic Sequencing Highlight Opportunities for Driver Mutation Discovery. Cancer Research, 2014, 74, 6390-6396.	0.4	33
103	Feasibility and clinical utility of endoscopic ultrasound guided biopsy of pancreatic cancer for next-generation molecular profiling. Chinese Clinical Oncology, 2019, 8, 16-16.	0.4	33
104	Gemcitabine and CHK1 Inhibition Potentiate EGFR-Directed Radioimmunotherapy against Pancreatic Ductal Adenocarcinoma. Clinical Cancer Research, 2014, 20, 3187-3197.	3.2	32
105	Understanding pancreatic cancer genomes. Journal of Hepato-Biliary-Pancreatic Sciences, 2013, 20, 549-556.	1.4	31
106	Cancer Biomarkers in the era of precision oncology: Addressing the needs of patients and health systems. Seminars in Cancer Biology, 2022, 84, 293-301.	4.3	30
107	A Novel Approach to High Definition, High-Contrast Video Capture in Abdominal Surgery. Annals of Surgery, 2007, 245, 533-535.	2.1	29
108	Improving outcomes for operable pancreatic cancer: Is access to safer surgery the problem?. Journal of Gastroenterology and Hepatology (Australia), 2008, 23, 1036-1045.	1.4	29

#	Article	IF	CITATIONS
109	Resolution of Novel Pancreatic Ductal Adenocarcinoma Subtypes by Global Phosphotyrosine Profiling. Molecular and Cellular Proteomics, 2016, 15, 2671-2685.	2.5	29
110	Sirtuin 1 stimulates the proliferation and the expression of glycolysis genes in pancreatic neoplastic lesions. Oncotarget, 2016, 7, 74768-74778.	0.8	29
111	New <i>RAS</i> -Mutant Pancreatic Adenocarcinoma With Combined BRAF and MEK Inhibition for Metastatic Melanoma. Journal of Clinical Oncology, 2015, 33, e52-e56.	0.8	28
112	The Driver Mutational Landscape of Ovarian Squamous Cell Carcinomas Arising in Mature Cystic Teratoma. Clinical Cancer Research, 2017, 23, 7633-7640.	3.2	27
113	Lost in translation: returning germline genetic results in genome-scale cancer research. Genome Medicine, 2017, 9, 41.	3.6	27
114	Structural Variants at the <i>BRCA1/2</i> Loci are a Common Source of Homologous Repair Deficiency in High-grade Serous Ovarian Carcinoma. Clinical Cancer Research, 2021, 27, 3201-3214.	3.2	27
115	DNA methylation patterns identify subgroups of pancreatic neuroendocrine tumors with clinical association. Communications Biology, 2021, 4, 155.	2.0	26
116	Genomic and Molecular Analyses Identify Molecular Subtypes of Pancreatic Cancer Recurrence. Gastroenterology, 2022, 162, 320-324.e4.	0.6	26
117	Returning individual research results for genome sequences of pancreatic cancer. Genome Medicine, 2014, 6, 42.	3.6	25
118	Pancreas-Specific Sirt1-Deficiency in Mice Compromises Beta-Cell Function without Development of Hyperglycemia. PLoS ONE, 2015, 10, e0128012.	1.1	25
119	Histone deacetylase 2 and N-Myc reduce p53 protein phosphorylation at serine 46 by repressing gene transcription of tumor protein 53-induced nuclear protein 1. Oncotarget, 2014, 5, 4257-4268.	0.8	25
120	Molecular pathogenesis of precursor lesions of pancreatic ductal adenocarcinoma. Pathology, 2003, 35, 14-24.	0.3	23
121	Defining research priorities for pancreatic cancer in Australia: results of a consensus development process. Cancer Causes and Control, 2010, 21, 729-736.	0.8	23
122	Intravital imaging technology guides FAK-mediated priming in pancreatic cancer precision medicine according to Merlin status. Science Advances, 2021, 7, eabh0363.	4.7	23
123	Cyclin E Expression and Outcome in Pancreatic Ductal Adenocarcinoma. Cancer Epidemiology Biomarkers and Prevention, 2006, 15, 1941-1947.	1.1	22
124	Surgical Therapy for Gastrointestinal Stromal Tumours of the Upper Gastrointestinal Tract. Journal of Gastrointestinal Surgery, 2009, 13, 1220-1225.	0.9	22
125	Real Time Intraoperative Confocal Laser Microscopy-Guided Surgery. Annals of Surgery, 2009, 249, 735-737.	2.1	22
126	Personalising pancreas cancer treatment: When tissue is the issue. World Journal of Gastroenterology, 2014, 20, 7849.	1.4	22

#	Article	IF	CITATIONS
127	Retinoid Signaling in Pancreatic Cancer, Injury and Regeneration. PLoS ONE, 2011, 6, e29075.	1.1	20
128	Low meprin expression differentiates primary ovarian mucinous carcinoma from gastrointestinal cancers that commonly metastasise to the ovaries. Journal of Clinical Pathology, 2007, 60, 622-626.	1.0	19
129	A histological survey of green fluorescent protein expression in â€~green' mice: implications for stem cell research. Pathology, 2007, 39, 247-251.	0.3	17
130	RON is not a prognostic marker for resectable pancreatic cancer. BMC Cancer, 2012, 12, 395.	1.1	17
131	The epigenetic agents suberoylanilide hydroxamic acid and 5-AZA-2′ deoxycytidine decrease cell proliferation, induce cell death and delay the growth of MiaPaCa2 pancreatic cancer cells in vivo. International Journal of Oncology, 2015, 46, 2223-2230.	1.4	17
132	Defining the clinical genomic landscape for real-world precision oncology. Genomics, 2020, 112, 5324-5330.	1.3	16
133	Plexiform angiomyxoid myofibroblastic tumour of the stomach: a case report. Pathology, 2010, 42, 581-583.	0.3	15
134	The Challenges of Precision Oncology Drug Development and Implementation. Public Health Genomics, 2015, 18, 338-348.	0.6	15
135	FAK regulates IL-33 expression by controlling chromatin accessibility at c-Jun motifs. Scientific Reports, 2021, 11, 229.	1.6	14
136	Preclinical strategies to define predictive biomarkers for therapeutically relevant cancer subtypes. Human Genetics, 2011, 130, 93-101.	1.8	13
137	Pancreatic cancer genomics: where can the science take us?. Clinical Genetics, 2015, 88, 213-219.	1.0	13
138	MutY-Homolog (MYH) inhibition reduces pancreatic cancer cell growth and increases chemosensitivity. Oncotarget, 2017, 8, 9216-9229.	0.8	13
139	Role of endoscopic ultrasound in pancreatic cancer. Expert Review of Gastroenterology and Hepatology, 2009, 3, 293-303.	1.4	12
140	The road to precision oncology. Nature Genetics, 2017, 49, 320-321.	9.4	12
141	Reasons to be testing: the dawn of complex molecular profiling in routine oncology practice. Annals of Oncology, 2019, 30, 1691-1694.	0.6	12
142	Muscle-Derived Cytokines Reduce Growth, Viability and Migratory Activity of Pancreatic Cancer Cells. Cancers, 2021, 13, 3820.	1.7	12
143	Abdominal Shotgun Wound With Pellet Embolization Leading to Bilateral Lower Limb Amputation: Case Report and Review of the Literature of Missile Emboli Over the Past 10 Years. Journal of Trauma, 2009, 67, E202-E208.	2.3	11
144	Loss of STARD10 expression identifies a group of poor prognosis breast cancers independent of HER2/Neu and triple negative status. International Journal of Cancer, 2010, 126, 1445-1453.	2.3	11

#	Article	IF	CITATIONS
145	Germline Aberrations in Pancreatic Cancer: Implications for Clinical Care. Cancers, 2022, 14, 3239.	1.7	11
146	An unbiased highâ€ŧhroughput drug screen reveals a potential therapeutic vulnerability in the most lethal molecular subtype of pancreatic cancer. Molecular Oncology, 2020, 14, 1800-1816.	2.1	10
147	Modulation of pancreatic cancer cell sensitivity to FOLFIRINOX through microRNA-mediated regulation of DNA damage. Nature Communications, 2021, 12, 6738.	5.8	10
148	LMO4 expression in squamous cell carcinoma of the anterior tongue. Histopathology, 2011, 58, 477-480.	1.6	9
149	The impact of COVID-19 on pancreatic cancer research and the path forward. Gastroenterology, 2021, 161, 1758-1763.	0.6	8
150	Messina: A Novel Analysis Tool to Identify Biologically Relevant Molecules in Disease. PLoS ONE, 2009, 4, e5337.	1.1	8
151	COVID-19 provides an opportunity to transform cancer research. Cancer Cell, 2021, 39, 1169-1170.	7.7	7
152	Individualizing therapy for pancreatic cancer. Journal of Gastroenterology and Hepatology (Australia), 2008, 23, 1779-1782.	1.4	6
153	Taking optical biopsies with confocal endomicroscopy. Journal of Gastroenterology and Hepatology (Australia), 2009, 24, 1701-1703.	1.4	6
154	Cancer Genetics and Implications for Clinical Management. Surgical Clinics of North America, 2015, 95, 919-934.	0.5	6
155	ICGC-ARGO precision medicine: familial matters in pancreatic cancer. Lancet Oncology, The, 2022, 23, 25-26.	5.1	6
156	Pancreatic Anomaly With Multiple Endocrine Neoplasia Type 1. Pancreas, 2008, 36, 314-315.	0.5	5
157	Can we move towards personalised pancreatic cancer therapy?. Expert Review of Gastroenterology and Hepatology, 2014, 8, 335-338.	1.4	5
158	10. Precision Oncology in Surgery: Patient Selection Biomarkers for Operable Pancreatic Cancer. European Journal of Surgical Oncology, 2018, 44, 1838.	0.5	5
159	ROR1 and ROR2 expression in pancreatic cancer. BMC Cancer, 2021, 21, 1199.	1.1	4
160	The road ahead: less travelled and more arduous than initially envisioned. Human Genetics, 2011, 130, 1-2.	1.8	3
161	Novel cancer drivers: mining the kinome. Genome Medicine, 2013, 5, 19.	3.6	3
162	Inherited Susceptibility to Pancreatic Cancer in the Era of Next-Generation Sequencing. Gastroenterology, 2015, 148, 496-498.	0.6	3

#	Article	IF	CITATIONS
163	ICGC-ARGO precision medicine: targeted therapy according to longitudinal assessment of tumour heterogeneity in colorectal cancer. Lancet Oncology, The, 2022, 23, 463-464.	5.1	3
164	Giant inguinal hernia containing right colon repaired using the prolene hernia system. ANZ Journal of Surgery, 2009, 79, 92-93.	0.3	2
165	Diagnosis and Management of Hereditary Pancreatic Cancer. Recent Results in Cancer Research, 2016, 205, 61-83.	1.8	2
166	Pharmacologic Targeting of TFIIH Suppresses KRAS-Mutant Pancreatic Ductal Adenocarcinoma and Synergizes with TRAIL. Cancer Research, 2022, 82, 3375-3393.	0.4	2
167	Role of endoscopic ultrasound in the management of pancreatic lesions. ANZ Journal of Surgery, 2008, 78, 315-316.	0.3	1
168	ENDOCRINE CELLS OF TRANSITIONAL MUCOSA ADJACENT TO COLONIC ADENOCARCINOMA. ANZ Journal of Surgery, 1995, 65, 334-338.	0.3	0
169	Reply to G.F. Arroyo. Journal of Clinical Oncology, 2013, 31, 3843-3844.	0.8	Ο
170	Molecular profiling and therapeutic decision-making: the promise of personalized medicine. , 0, , 929-935.		0
171	A workflow to increase verification rate of chromosomal structural rearrangements using high-throughput next-generation sequencing. BioTechniques, 2014, 57, 31-38.	0.8	0
172	Stratified Medicine for Pancreatic Cancer. , 2014, , 807-814.		0
173	Molecular Subtyping of Pancreatic Cancer. , 2021, , 305-319.		0
174	Pathology and Molecular Biology of Intraductal Papillary Mucinous Neoplasms. , 2008, , 53-64.		0
175	Management of Nutritional Issues After Major Pancreatic Resections. , 2009, , 487-506.		0
176	Molecular Diagnostics: Translation from Discovery to Clinical Practice. , 2016, , 1-26.		0