Zongrui Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2567185/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Reducing aggregation caused quenching effect through co-assembly of PAH chromophores and molecular barriers. Nature Communications, 2019, 10, 169.	5.8	303
2	Organic Cocrystals: Beyond Electrical Conductivities and Fieldâ€Effect Transistors (FETs). Angewandte Chemie - International Edition, 2019, 58, 9696-9711.	7.2	234
3	Improving Interfacial Charge Recombination in Planar Heterojunction Perovskite Photovoltaics with Small Molecule as Electron Transport Layer. Advanced Energy Materials, 2017, 7, 1700522.	10.2	173
4	Rational Control of Charge Transfer Excitons Toward Highâ€Contrast Reversible Mechanoresponsive Luminescent Switching. Angewandte Chemie - International Edition, 2020, 59, 17580-17586.	7.2	83
5	Green Grinding-Coassembly Engineering toward Intrinsically Luminescent Tetracene in Cocrystals. ACS Nano, 2020, 14, 15962-15972.	7.3	54
6	Efficient Inverted Perovskite Solar Cells by Employing Nâ€Type (D–A ₁ –D–A ₂) Polymers as Electron Transporting Layer. Small, 2019, 15, e1803339.	5.2	50
7	Organic Cocrystals: Beyond Electrical Conductivities and Fieldâ€Effect Transistors (FETs). Angewandte Chemie, 2019, 131, 9798-9813.	1.6	41
8	The Role of Weak Molecular Dopants in Enhancing the Performance of Solutionâ€Processed Organic Fieldâ€Effect Transistors. Advanced Electronic Materials, 2019, 5, 1800547.	2.6	32
9	Insights into the Control of Optoelectronic Properties in Mixed‣tacking Chargeâ€Transfer Complexes. Chemistry - A European Journal, 2020, 26, 3578-3585.	1.7	29
10	Improving the Fill Factor of Perovskite Solar Cells by Employing an Amine-tethered Diketopyrrolopyrrole-Based Polymer as the Dopant-free Hole Transport Layer. ACS Applied Energy Materials, 2020, 3, 9600-9609.	2.5	26
11	Recent progress in the usage of tetrabromo-substituted naphthalenetetracarboxylic dianhydride as a building block to construct organic semiconductors and their applications. Organic Chemistry Frontiers, 2020, 7, 3001-3026.	2.3	22
12	Organic Donorâ€Acceptor Cocrystals for Multiferroic Applications. Asian Journal of Organic Chemistry, 2020, 9, 1252-1261.	1.3	22
13	Molecular Aggregation of Naphthalene Diimide(NDI) Derivatives in Electron Transport Layers of Inverted Perovskite Solar Cells and Their Influence on the Device Performance. Chemistry - an Asian Journal, 2020, 15, 112-121.	1.7	20
14	Rational Control of Charge Transfer Excitons Toward High ontrast Reversible Mechanoresponsive Luminescent Switching. Angewandte Chemie, 2020, 132, 17733-17739.	1.6	17
15	Solar Cells: Improving Interfacial Charge Recombination in Planar Heterojunction Perovskite Photovoltaics with Small Molecule as Electron Transport Layer (Adv. Energy Mater. 18/2017). Advanced Energy Materials, 2017, 7, .	10.2	13
16	Sulfur Position in Pyrene-Based PTTIs Plays a Key Role To Determine the Performance of Perovskite Solar Cells When PTTIs Were Employed as Electron Transport Layers. ACS Applied Energy Materials, 2019, 2, 5716-5723.	2.5	13
17	Improving the hole transport performance of perovskite solar cells through adjusting the mobility of the as-synthesized conjugated polymer. Journal of Materials Chemistry C, 2021, 9, 3421-3428.	2.7	12
18	Structure engineering: extending the length of azaacene derivatives through quinone bridges. Journal of Materials Chemistry C, 2018, 6, 3628-3633.	2.7	10

#	Article	IF	CITATIONS
19	Imideâ€Fused Diazatetracenes: Synthesis, Characterization, and Application in Perovskite Solar Cells. Chemistry - A European Journal, 2020, 26, 4220-4225.	1.7	4
20	A co-crystallization strategy toward high-performance n-type organic semiconductors through charge transport switching from p-type planar azaacene derivatives. Journal of Materials Chemistry C, 2022, 10, 2757-2762.	2.7	4