Cheng-Yao Lo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2567114/publications.pdf

Version: 2024-02-01

50 papers	566 citations	567281 15 h-index	677142 22 g-index
рирего	Citations	II IIICX	g muca
51 all docs	51 docs citations	51 times ranked	412 citing authors

#	Article	IF	CITATIONS
1	Smart manufacturing powered by recent technological advancements: A review. Journal of Manufacturing Systems, 2022, 64, 236-250.	13.9	44
2	MEMS-Controlled Paper-Like Transmissive Flexible Display. Journal of Microelectromechanical Systems, 2010, 19, 410-418.	2.5	39
3	Highly transparent and excellent electromagnetic interference shielding hybrid films composed of sliver-grid/(silver nanowires and reduced graphene oxide). Materials Letters, 2019, 253, 152-155.	2.6	38
4	Novel roll-to-roll lift-off patterned active-matrix display on flexible polymer substrate. Microelectronic Engineering, 2009, 86, 979-983.	2.4	36
5	Mutual Capacitive Flexible Tactile Sensor for 3-D Image Control. Journal of Microelectromechanical Systems, 2013, 22, 804-814.	2.5	34
6	Capacitive tactile sensor with asymmetric electrodes for angle-detection-error alleviation. Sensors and Actuators A: Physical, 2016, 250, 159-169.	4.1	27
7	Vertically stacked capacitive tactile sensor with more than quadrupled spatial resolution enhancement from planar arrangement. Sensors and Actuators A: Physical, 2017, 263, 386-390.	4.1	26
8	Friction-Assisted Pulling Force Detection Mechanism for Tactile Sensors. Journal of Microelectromechanical Systems, 2014, 23, 471-481.	2.5	23
9	Porosity reduction in inkjet-printed copper film by progressive sintering on nanoparticles. Thin Solid Films, 2017, 627, 33-38.	1.8	23
10	Realization of Multistage Detection Sensitivity and Dynamic Range in Capacitive Tactile Sensors. IEEE Sensors Journal, 2020, 20, 9724-9732.	4.7	20
11	Investigation of transparent and conductive undoped Zn2In2O5â^'x films deposited on n-type GaN layers. Journal of Applied Physics, 2002, 92, 274-280.	2.5	19
12	Capacitive tactile sensor for angle detection and its accuracy study. IEEE Sensors Journal, 2016, , 1-1.	4.7	19
13	Doubling the spatial resolution in capacitive tactile sensors. Journal of Micro/ Nanolithography, MEMS, and MOEMS, 2017, 16, 035001.	0.9	18
14	Five-fold sensitivity enhancement in a capacitive tactile sensor by reducing material and structural rigidity. Sensors and Actuators A: Physical, 2019, 293, 167-177.	4.1	18
15	Mechanical stress-controlled tunable active frequency-selective surface. Applied Physics Letters, 2017, 110, .	3.3	15
16	Soft and flexible sensor array using carbon black pillars for object recognition via pressure mapping. Measurement: Journal of the International Measurement Confederation, 2020, 159, 107781.	5.0	15
17	Post-lithography pattern modification and its application to a tunable wire grid polarizer. Nanotechnology, 2013, 24, 115306.	2.6	12
18	A High Sensitivity Three-Dimensional-Shape Sensing Patch Prepared by Lithography and Inkjet Printing. Sensors, 2012, 12, 4172-4186.	3.8	11

#	Article	IF	Citations
19	Highly elastic and flexible multi-layered carbon black/elastomer composite based capacitive sensor arrays for soft robotics. Measurement: Sensors, 2019, 2-4, 100004.	1.7	11
20	Development and Characterization of Vertically Stacked Tactile Sensor With Hollow Structure. IEEE Sensors Journal, 2021, 21, 5809-5818.	4.7	10
21	Critical dimension and pattern size enhancement using pre-strained lithography. Applied Physics Letters, 2014, 105, 154103.	3.3	9
22	CMOS-MEMS thermal-piezoresistive oscillators with high transduction efficiency for mass sensing applications. , 2017, , .		9
23	Zero power consumption visual curvature sensor by flexible interferometer. Sensors and Actuators A: Physical, 2011, 169, 295-300.	4.1	8
24	Thermoresistive Strain Sensor and Positioning Method for Roll-to-Roll Processes. Sensors, 2014, 14, 8082-8095.	3.8	8
25	Methodology for evaluating pattern transfer completeness in inkjet printing with irregular edges. Journal of Micromechanics and Microengineering, 2016, 26, 065009.	2.6	7
26	Continuous inkjet-patterned and flashlight-sintered strain sensor for in-line off-axis detection in Roll-to-Roll manufacturing. Mechatronics, 2019, 59, 95-103.	3.3	7
27	Novel Response Acquisition Method for Enhancing Spatial Resolution in Capacitive Tactile Sensing Array. IEEE Sensors Journal, 2021, 21, 5895-5903.	4.7	7
28	Enlarging a post-lithography pattern modification process window with a Poisson's ratio-matching inter-layer. Microelectronic Engineering, 2014, 127, 97-101.	2.4	6
29	Morphology and conductivity improvement of metal mesh through rollâ€toâ€rollâ€compatible nearâ€infrared sintering. Micro and Nano Letters, 2017, 12, 886-890.	1.3	6
30	Efficient and improved qualification method for patterns with irregular edges in printed electronics. Journal of Micromechanics and Microengineering, 2019, 29, 124005.	2.6	5
31	Advanced qualification method for patterns with irregular edges in printed electronics. Flexible and Printed Electronics, 2019, 4, 015001.	2.7	5
32	Structure compensation and illumination uniformity improvement through inkjet printing in organic light-emitting diode subpixels. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2017, 35, 020601.	1.2	3
33	Inkjet-patterned porous split-ring resonator and its performance study on metamaterial application. Journal of Micromechanics and Microengineering, 2018, 28, 095012.	2.6	3
34	Surface plasmon resonance manipulation through application of mechanically generated planar and linear strain. Applied Physics Express, 2019, 12, 096504.	2.4	3
35	Advancements in Polymeric Capacitive Tactile Sensors. , 2019, , .		3
36	Enhancing the Detection Sensitivity in Capacitive Tactile Sensors With Optimized Electrode Shapes. IEEE Sensors Journal, 2021, 21, 26294-26303.	4.7	3

#	Article	IF	CITATIONS
37	Machine learning-based off-line electrical characteristic prediction through in-line pattern integrity inspection. Journal of Micromechanics and Microengineering, 2021, 31, 015005.	2.6	3
38	Numerical analysis of a microelectromechanical system-based color filtering device with surface plasmon resonance modulation. Displays, 2018, 54, 20-27.	3.7	2
39	An integrated method based on energy concentration for evaluating normally distributed spectra in the visible region. Displays, 2019, 57, 7-17.	3.7	2
40	Calibrations on Shear Angle Detections in Vertically Stacked Capacitive Tactile Sensors. IEEE Sensors Journal, 2021, 21, 26269-26276.	4.7	2
41	Electromagnetic characteristic estimation on spiral antennas through AOI, ML, and AI. Flexible and Printed Electronics, 2022, 7, 025012.	2.7	2
42	Morphology and conductivity enhancement of metal mesh in OLEDs by near infrared and intense pulse light. , $2017, , .$		1
43	Surface plasmonic resonance modulation by MEMS-elastomer hybrid system. , 2018, , .		1
44	Strain sensor with low thermal conductivity concealing resin for enhanced detection sensitivity and improved spatial resolution. Journal of Micromechanics and Microengineering, 2019, 29, 124001.	2.6	1
45	Linear strain maximization in MEMS-elastomer hybrid configurations for isotropic electromagnetic modulations in stretchable electronics. Displays, 2020, 64, 101963.	3.7	1
46	51.3: Pulling Force Sensing Unit for 3D Image Movement. Digest of Technical Papers SID International Symposium, 2013, 44, 713-716.	0.3	0
47	Nano metal crack initiation on polymer and its optical application with tunable metal dimensions. , 2014, , .		O
48	Extensive Sensitivity Enhancement in Stacked Capacitive Tactile Sensors., 2019,,.		0
49	Advanced Capacitor Arrangement for Enhanced Spatial Resolution in Tactile Sensors. , 2020, , .		0
50	Multifunction Force Sensor with Hollow Structure., 2020,,.		0