Emilie Moulin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2566813/publications.pdf

Version: 2024-02-01

65 papers

4,652 citations

126708 33 h-index 98622 67 g-index

79 all docs

79 docs citations

79 times ranked 5304 citing authors

#	Article	IF	CITATIONS
1	Evidence by neutron diffraction of molecular compounds in triarylamine tris-amide organogels and in their hybrid thermoreversible gels with PVC. Soft Matter, 2022, 18, 2851-2857.	1.2	7
2	Light-Driven Molecular Whirligig. Journal of the American Chemical Society, 2022, 144, 9845-9852.	6.6	27
3	Effect of solvent isomers on the gelation properties of tri-aryl amine organogels and their hybrid thermoreversible gels with poly[vinyl chloride]. Soft Matter, 2022, 18, 5575-5584.	1.2	2
4	Supramolecular Polymerization of Triarylamine-Based Macrocycles into Electroactive Nanotubes. Journal of the American Chemical Society, 2021, 143, 6498-6504.	6.6	26
5	Design of Stimuliâ€Responsive Dynamic Covalent Delivery Systems for Volatile Compounds (Partâ€2): Fragranceâ€Releasing Cleavable Surfactants in Functional Perfumery Applications. Chemistry - A European Journal, 2021, 27, 13468-13476.	1.7	13
6	Modulation of the Molecular Structure of Tri-aryl Amine Fibrils in Hybrid Poly[vinyl chloride] Gel/Organogel Systems. Macromolecules, 2021, 54, 8104-8111.	2.2	8
7	Design of Stimuliâ€Responsive Dynamic Covalent Delivery Systems for Volatile Compounds (Partâ€1): Controlled Hydrolysis of Micellar Amphiphilic Imines in Water. Chemistry - A European Journal, 2021, 27, 13457-13467.	1.7	10
8	Light-Driven Molecular Motors Boost the Selective Transport of Alkali Metal Ions through Phospholipid Bilayers. Journal of the American Chemical Society, 2021, 143, 15653-15660.	6.6	37
9	Extraction of mechanical work from stimuli-responsive molecular systems and materials. Trends in Chemistry, 2021, 3, 926-942.	4.4	16
			the state of the s
10	Design of Collective Motions from Synthetic Molecular Switches, Rotors, and Motors. Chemical Reviews, 2020, 120, 310-433.	23.0	325
10	Design of Collective Motions from Synthetic Molecular Switches, Rotors, and Motors. Chemical Reviews, 2020, 120, 310-433. From Molecular Machines to Stimuliâ€Responsive Materials. Advanced Materials, 2020, 32, e1906036.	23.0	325 155
	Reviews, 2020, 120, 310-433.		
11	Reviews, 2020, 120, 310-433. From Molecular Machines to Stimuliâ∈Responsive Materials. Advanced Materials, 2020, 32, e1906036. Hybrid materials from tri-aryl amine organogelators and poly[vinyl chloride] networks. Polymer,	11.1	155
11 12	Reviews, 2020, 120, 310-433. From Molecular Machines to Stimuliâ€Responsive Materials. Advanced Materials, 2020, 32, e1906036. Hybrid materials from tri-aryl amine organogelators and poly[vinyl chloride] networks. Polymer, 2020, 207, 122814. Structural properties of contractile gels based on light-driven molecular motors: a small-angle	11.1	155 7
11 12 13	Reviews, 2020, 120, 310-433. From Molecular Machines to Stimuliâ€Responsive Materials. Advanced Materials, 2020, 32, e1906036. Hybrid materials from tri-aryl amine organogelators and poly[vinyl chloride] networks. Polymer, 2020, 207, 122814. Structural properties of contractile gels based on light-driven molecular motors: a small-angle neutron and X-ray study. Soft Matter, 2020, 16, 4008-4023. Homodyne dynamic light scattering in supramolecular polymer solutions: anomalous oscillations in	11.1 1.8 1.2	155 7 6
11 12 13	Reviews, 2020, 120, 310-433. From Molecular Machines to Stimuliâ€Responsive Materials. Advanced Materials, 2020, 32, e1906036. Hybrid materials from tri-aryl amine organogelators and poly[vinyl chloride] networks. Polymer, 2020, 207, 122814. Structural properties of contractile gels based on light-driven molecular motors: a small-angle neutron and X-ray study. Soft Matter, 2020, 16, 4008-4023. Homodyne dynamic light scattering in supramolecular polymer solutions: anomalous oscillations in intensity correlation function. Soft Matter, 2020, 16, 2971-2993. Covalently Trapped Triarylamineâ€Based Supramolecular Polymers. Chemistry - A European Journal, 2019,	11.1 1.8 1.2	155 7 6
11 12 13 14	Reviews, 2020, 120, 310-433. From Molecular Machines to Stimuliâ€Responsive Materials. Advanced Materials, 2020, 32, e1906036. Hybrid materials from tri-aryl amine organogelators and poly[vinyl chloride] networks. Polymer, 2020, 207, 122814. Structural properties of contractile gels based on light-driven molecular motors: a small-angle neutron and X-ray study. Soft Matter, 2020, 16, 4008-4023. Homodyne dynamic light scattering in supramolecular polymer solutions: anomalous oscillations in intensity correlation function. Soft Matter, 2020, 16, 2971-2993. Covalently Trapped Triarylamineâ€Based Supramolecular Polymers. Chemistry - A European Journal, 2019, 25, 14341-14348. Temperature Control of Sequential Nucleation–Growth Mechanisms in Hierarchical Supramolecular	11.1 1.8 1.2 1.2	155 7 6 1 5

#	Article	IF	CITATIONS
19	Mechanical behaviour of contractile gels based on light-driven molecular motors. Nanoscale, 2019, 11, 5197-5202.	2.8	23
20	Supramolecular Electropolymerization. Angewandte Chemie, 2018, 130, 15975-15979.	1.6	14
21	Supramolecular Electropolymerization. Angewandte Chemie - International Edition, 2018, 57, 15749-15753.	7.2	38
22	3D supramolecular self-assembly of [60]fullerene hexaadducts decorated with triarylamine molecules. Chemical Communications, 2018, 54, 7657-7660.	2.2	8
23	Anisotropic Self-Assembly of Supramolecular Polymers and Plasmonic Nanoparticles at the Liquid–Liquid Interface. Journal of the American Chemical Society, 2017, 139, 2345-2350.	6.6	61
24	Columnar Self-Assemblies of Triarylamines as Scaffolds for Artificial Biomimetic Channels for Ion and for Water Transport. Journal of the American Chemical Society, 2017, 139, 3721-3727.	6.6	65
25	Gram scale synthesis of functionalized and optically pure Feringa's motors. Tetrahedron, 2017, 73, 4874-4882.	1.0	17
26	Controlled Sol–Gel Transitions by Actuating Molecular Machine Based Supramolecular Polymers. Journal of the American Chemical Society, 2017, 139, 4923-4928.	6.6	117
27	Dual-light control of nanomachines that integrate motor and modulator subunits. Nature Nanotechnology, 2017, 12, 540-545.	15.6	190
28	Bistable [<i>c</i> 2] Daisy Chain Rotaxanes as Reversible Muscle-like Actuators in Mechanically Active Gels. Journal of the American Chemical Society, 2017, 139, 14825-14828.	6.6	112
29	Integration of molecular machines into supramolecular materials: actuation between equilibrium polymers and crystal-like gels. Nanoscale, 2017, 9, 18456-18466.	2.8	15
30	Hierarchical Selfâ€Assembly of Supramolecular Muscleâ€Like Fibers. Angewandte Chemie - International Edition, 2016, 55, 703-707.	7.2	91
31	Supramolecular Organic Nanowires as Plasmonic Interconnects. ACS Nano, 2016, 10, 2082-2090.	7.3	20
32	Long-Range Energy Transport via Plasmonic Propagation in a Supramolecular Organic Waveguide. Nano Letters, 2016, 16, 2800-2805.	4.5	35
33	Self-assembly of supramolecular triarylamine nanowires in mesoporous silica and biocompatible electrodes thereof. Nanoscale, 2016, 8, 5605-5611.	2.8	7
34	Self-assembly of benzene-tris(bis(p-benzyloxy)triphenylamine)carboxamide. Comptes Rendus Chimie, 2016, 19, 117-122.	0.2	4
35	Light Scattering Strategy for the Investigation of Time-Evolving Heterogeneous Supramolecular Self-Assemblies. Physical Review Letters, 2015, 115, 085501.	2.9	13
36	pH and light-controlled self-assembly of bistable [c2] daisy chain rotaxanes. Chemical Communications, 2015, 51, 4212-4215.	2.2	44

#	Article	IF	CITATIONS
37	Macroscopic contraction of a gel induced by the integrated motion of light-driven molecular motors. Nature Nanotechnology, 2015, 10, 161-165.	15.6	301
38	Light-Controlled Morphologies of Self-Assembled Triarylamine–Fullerene Conjugates. ACS Nano, 2015, 9, 2760-2772.	7.3	39
39	Hydrogen-Bonded Multifunctional Supramolecular Copolymers in Water. Langmuir, 2015, 31, 7738-7748.	1.6	7
40	Control over Nanostructures and Associated Mesomorphic Properties of Doped Selfâ€Assembled Triarylamine Liquid Crystals. Chemistry - A European Journal, 2015, 21, 1938-1948.	1.7	24
41	Experimental and theoretical methods for the analyses of dynamic combinatorial libraries. New Journal of Chemistry, 2014, 38, 3336-3349.	1.4	35
42	A move in the right direction. Nature Nanotechnology, 2014, 9, 331-332.	15.6	4
43	Supramolecular Self-Assembly and Radical Kinetics in Conducting Self-Replicating Nanowires. ACS Nano, 2014, 8, 10111-10124.	7.3	55
44	Healable Supramolecular Polymers as Organic Metals. Journal of the American Chemical Society, 2014, 136, 11382-11388.	6.6	86
45	Supramolecular self-assemblies as functional nanomaterials. Nanoscale, 2013, 5, 7098.	2.8	610
46	Advances in Supramolecular Electronics – From Randomly Selfâ€assembled Nanostructures to Addressable Selfâ€Organized Interconnects. Advanced Materials, 2013, 25, 477-487.	11.1	140
47	Muscleâ€like Supramolecular Polymers: Integrated Motion from Thousands of Molecular Machines. Angewandte Chemie - International Edition, 2012, 51, 12504-12508.	7.2	215
48	Dynamic combinatorial chemistry as a tool for the design of functional materials and devices. Chemical Society Reviews, 2012, 41, 1031-1049.	18.7	249
49	Light-triggered self-assembly of triarylamine-based nanospheres. Nanoscale, 2012, 4, 6748.	2.8	21
50	Light-triggered self-construction of supramolecular organic nanowires as metallic interconnects. Nature Chemistry, 2012, 4, 485-490.	6.6	164
51	Hierarchical supramolecular structuring and dynamical properties of water soluble polyethylene glycol–perylene self-assemblies. Physical Chemistry Chemical Physics, 2012, 14, 5718.	1.3	13
52	Dynamic Combinatorial Self-Replicating Systems. Topics in Current Chemistry, 2011, 322, 87-105.	4.0	27
53	Gramâ€Scale Synthesis of lejimalide B. Chemistry - A European Journal, 2011, 17, 6964-6972.	1.7	72
54	Molecular Editing and Assessment of the Cytotoxic Properties of lejimalide and Progeny. Chemistry - A European Journal, 2011, 17, 6973-6984.	1.7	23

#	Article	lF	CITATION
55	The Hierarchical Selfâ€Assembly of Charge Nanocarriers: A Highly Cooperative Process Promoted by Visible Light. Angewandte Chemie - International Edition, 2010, 49, 6974-6978.	7.2	114
56	Synthesis and evaluation of an lejimalide-archazolid chimera. Tetrahedron, 2010, 66, 6421-6428.	1.0	23
57	Total Synthesis and Biological Evaluation of the Cytotoxic Resin Glycosides Ipomoeassin A–F and Analogues. Chemistry - A European Journal, 2009, 15, 9697-9706.	1.7	59
58	Resorcylic acid lactones: A pluripotent scaffold with therapeutic potential. Comptes Rendus Chimie, 2008, 11, 1306-1317.	0.2	45
59	Total Synthesis of lejimalide Aâ^'D and Assessment of the Remarkable Actin-Depolymerizing Capacity of These Polyene Macrolides. Journal of the American Chemical Society, 2007, 129, 9150-9161.	6.6	143
60	Diversity-Oriented Synthesis of Pochonins and Biological Evaluation against a Panel of Kinases. Chemistry - A European Journal, 2006, 12, 8819-8834.	1.7	40
61	Solution- and Solid-Phase Synthesis of Radicicol (Monorden) and Pochonin C. Chemistry - A European Journal, 2005, 11, 4935-4952.	1.7	63
62	Design, Synthesis, and Biological Evaluation of HSP90 Inhibitors Based on Conformational Analysis of Radicicol and Its Analogues. Journal of the American Chemical Society, 2005, 127, 6999-7004.	6.6	133
63	Concise Synthesis of Pochonin A, an HSP90 Inhibitor. Organic Letters, 2005, 7, 5637-5639.	2.4	50
64	Modular Asymmetric Synthesis of Pochonin C. Angewandte Chemie - International Edition, 2004, 43, 3467-3470.	7.2	61
65	[c2]Daisy Chain Rotaxanes as Molecular Muscles. CCS Chemistry, 0, , 83-96.	4.6	28