
Simona L Polo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/256678/publications.pdf Version: 2024-02-01

SIMONAL POLO

#	Article	IF	CITATIONS
1	Clathrin-independent endocytosis of ubiquitinated cargos. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 2760-2765.	3.3	719
2	Multiple monoubiquitination of RTKs is sufficient for their endocytosis and degradation. Nature Cell Biology, 2003, 5, 461-466.	4.6	715
3	A single motif responsible for ubiquitin recognition and monoubiquitination in endocytic proteins. Nature, 2002, 416, 451-455.	13.7	592
4	Clathrin-Mediated Internalization Is Essential for Sustained EGFR Signaling but Dispensable for Degradation. Developmental Cell, 2008, 15, 209-219.	3.1	557
5	When ubiquitin meets ubiquitin receptors: a signalling connection. Nature Reviews Molecular Cell Biology, 2003, 4, 491-497.	16.1	278
6	Endocytosis and Signaling: Cell Logistics Shape the Eukaryotic Cell Plan. Physiological Reviews, 2012, 92, 273-366.	13.1	278
7	Crystal Structure of the Ubiquitin Binding Domains of Rabex-5 Reveals Two Modes of Interaction with Ubiquitin. Cell, 2006, 124, 1183-1195.	13.5	259
8	Endocytosis Conducts the Cell Signaling Orchestra. Cell, 2006, 124, 897-900.	13.5	245
9	Abi1 regulates the activity of N-WASP and WAVE in distinct actin-based processes. Nature Cell Biology, 2005, 7, 969-976.	4.6	201
10	USP15 is a deubiquitylating enzyme for receptor-activated SMADs. Nature Cell Biology, 2011, 13, 1368-1375.	4.6	182
11	Ubiquitin in trafficking: The network at work. Experimental Cell Research, 2009, 315, 1610-1618.	1.2	176
12	Molecular mechanisms of coupled monoubiquitination. Nature Cell Biology, 2006, 8, 1246-1254.	4.6	173
13	C–C Chemokines Released by Lipopolysaccharide (LPS)-stimulated Human Macrophages Suppress HIV-1 Infection in Both Macrophages and T Cells. Journal of Experimental Medicine, 1997, 185, 805-816.	4.2	160
14	Threshold-controlled ubiquitination of the EGFR directs receptor fate. EMBO Journal, 2013, 32, 2140-2157.	3.5	156
15	N-WASP deficiency impairs ECF internalization and actin assembly at clathrin-coated pits. Journal of Cell Science, 2005, 118, 3103-3115.	1.2	155
16	Deubiquitinating function of ataxin-3: Insights from the solution structure of the Josephin domain. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 12700-12705.	3.3	151
17	Structure of the HECT:ubiquitin complex and its role in ubiquitin chain elongation. EMBO Reports, 2011, 12, 342-349.	2.0	146
18	Structure of a ubiquitin-loaded HECT ligase reveals the molecular basis for catalytic priming. Nature Structural and Molecular Biology, 2013, 20, 696-701.	3.6	146

SIMONA L POLO

#	Article	IF	CITATIONS
19	A novel ubiquitin mark at the N-terminal tail of histone H2As targeted by RNF168 ubiquitin ligase. Cell Cycle, 2012, 11, 2538-2544.	1.3	141
20	Nucleoside diphosphate kinases fuel dynamin superfamily proteins with GTP for membrane remodeling. Science, 2014, 344, 1510-1515.	6.0	130
21	Reticulon 3–dependent ER-PM contact sites control EGFR nonclathrin endocytosis. Science, 2017, 356, 617-624.	6.0	118
22	Rapid Ca2+-dependent decrease of protein ubiquitination at synapses. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 14908-14913.	3.3	116
23	Nonproductive Human Immunodeficiency Virus Type 1 Infection of Human Fetal Astrocytes: Independence from CD4 and Major Chemokine Receptors. Virology, 1999, 264, 370-384.	1.1	113
24	The ubiquitination code: a signalling problem. Cell Division, 2007, 2, 11.	1.1	105
25	HECT E3 Ligases: A Tale With Multiple Facets. Frontiers in Physiology, 2019, 10, 370.	1.3	103
26	Cortactin Promotes Migration and Platelet-derived Growth Factor-induced Actin Reorganization by Signaling to Rho-GTPases. Molecular Biology of the Cell, 2009, 20, 3209-3223.	0.9	102
27	A two-tiered mechanism of EGFR inhibition by RALT/MIG6 via kinase suppression and receptor degradation. Journal of Cell Biology, 2010, 189, 557-571.	2.3	102
28	Endocytosis and cancer. Current Opinion in Cell Biology, 2004, 16, 156-161.	2.6	101
29	Nucleocytoplasmic Shuttling of Endocytic Proteins. Journal of Cell Biology, 2001, 153, 1511-1518.	2.3	94
30	Characterization of Human Constitutive Photomorphogenesis Protein 1, a RING Finger Ubiquitin Ligase That Interacts with Jun Transcription Factors and Modulates Their Transcriptional Activity. Journal of Biological Chemistry, 2003, 278, 19682-19690.	1.6	90
31	EH and UIM: Endocytosis and More. Science Signaling, 2003, 2003, re17-re17.	1.6	86
32	Tyrosine phosphorylation of NEDD4 activates its ubiquitin ligase activity. Science Signaling, 2014, 7, ra95.	1.6	76
33	USP9X Controls EGFR Fate by Deubiquitinating the Endocytic Adaptor Eps15. Current Biology, 2016, 26, 173-183.	1.8	71
34	Structural and Functional Framework for the Autoinhibition of Nedd4-Family Ubiquitin Ligases. Structure, 2014, 22, 1639-1649.	1.6	70
35	Quantitative analysis reveals how EGFR activation and downregulation are coupled in normal but not in cancer cells. Nature Communications, 2015, 6, 7999.	5.8	66
36	<i> <scp>HUWE</scp> 1 </i> is a critical colonic tumour suppressor gene that prevents <scp>MYC</scp> signalling, <scp>DNA</scp> damage accumulation and tumour initiation. EMBO Molecular Medicine, 2017, 9, 181-197.	3.3	63

Simona L Polo

#	Article	IF	CITATIONS
37	The LXR-IDOL axis defines a clathrin-, caveolae-, and dynamin-independent endocytic route for LDLR internalization and lysosomal degradation. Journal of Lipid Research, 2013, 54, 2174-2184.	2.0	60
38	Molecularly Distinct Clathrin-Coated Pits Differentially Impact EGFR Fate and Signaling. Cell Reports, 2019, 27, 3049-3061.e6.	2.9	58
39	Proteomic snapshot of the EGFâ€induced ubiquitin network. Molecular Systems Biology, 2011, 7, 462.	3.2	56
40	Targeting <scp>HECT</scp> â€ŧype E3 ligases – insights from catalysis, regulation and inhibitors. FEBS Letters, 2017, 591, 2636-2647.	1.3	55
41	Enhancement of the HIV-1 inhibitory activity of RANTES by modification of the N-terminal region: dissociation from CCR5 activation. European Journal of Immunology, 2000, 30, 3190-3198.	1.6	52
42	Structural determinants of CCR5 recognition and HIV-1 blockade in RANTES. Nature Structural Biology, 2001, 8, 611-615.	9.7	49
43	Myosin VI Contains a Compact Structural Motif that Binds to Ubiquitin Chains. Cell Reports, 2016, 14, 2683-2694.	2.9	49
44	Longitudinal analysis of serum chemokine levels in the course of HIV-1 infection. Aids, 1999, 13, 447-454.	1.0	48
45	Diverse functions of myosin VI elucidated by an isoform-specific α-helix domain. Nature Structural and Molecular Biology, 2016, 23, 300-308.	3.6	42
46	Desmoplakin maintains gap junctions by inhibiting Ras/MAPK and lysosomal degradation of connexin-43. Journal of Cell Biology, 2018, 217, 3219-3235.	2.3	41
47	Clathrin light chain A drives selective myosin VI recruitment to clathrin-coated pits under membrane tension. Nature Communications, 2019, 10, 4974.	5.8	38
48	Differential Nucleocytoplasmic Trafficking between the Related Endocytic Proteins Eps15 and Eps15R. Journal of Biological Chemistry, 2002, 277, 8941-8948.	1.6	36
49	Signaling-mediated control of ubiquitin ligases in endocytosis. BMC Biology, 2012, 10, 25.	1.7	34
50	Finding the Right Partner: Science or ART?. Cell, 2008, 135, 590-592.	13.5	32
51	A Highly Luminescent Tetrahydrocurcumin Ir ^{III} Complex with Remarkable Photoactivated Anticancer Activity. Chemistry - A European Journal, 2019, 25, 7948-7952.	1.7	32
52	Ubiquitination dynamics in the earlyâ€branching eukaryote G iardia intestinalis. MicrobiologyOpen, 2013, 2, 525-539.	1.2	23
53	β-Sheet Augmentation Is a Conserved Mechanism of Priming HECT E3 Ligases for Ubiquitin Ligation. Journal of Molecular Biology, 2018, 430, 3218-3233.	2.0	23
54	Selectivity of the CUBAN domain in the recognition of ubiquitin and NEDD8. FEBS Journal, 2019, 286, 653-677.	2.2	22

SIMONA L POLO

#	Article	IF	CITATIONS
55	Identification of a Phage-coded DNA-binding Protein that Regulates Transcription from Late Promoters in Bacteriophage P4. Journal of Molecular Biology, 1996, 257, 745-755.	2.0	19

10 Identification of two linear plasmids in the actinomycete Planobispora rosea. Microbiology (United) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50

57	When ubiquitin meets E-cadherin: Plasticity of the epithelial cellular barrier. Seminars in Cell and Developmental Biology, 2019, 93, 136-144.	2.3	19
58	Translation of Two Nested Genes in Bacteriophage P4 Controls Immunity-Specific Transcription Termination. Journal of Bacteriology, 1999, 181, 5225-5233.	1.0	17
59	Myomics: myosin VI structural and functional plasticity. Current Opinion in Structural Biology, 2021, 67, 33-40.	2.6	16
60	Myosin VI Drives Clathrin-Mediated AMPA Receptor Endocytosis to Facilitate Cerebellar Long-Term Depression. Cell Reports, 2019, 28, 11-20.e9.	2.9	15
61	The prolyl-isomerase PIN1 is essential for nuclear Lamin-B structure and function and protects heterochromatin under mechanical stress. Cell Reports, 2021, 36, 109694.	2.9	15
62	Keeping EGFR signaling in check. Cell Cycle, 2014, 13, 681-682.	1.3	13
63	CoCUN, a Novel Ubiquitin Binding Domain Identified in N4BP1. Biomolecules, 2019, 9, 284.	1.8	12
64	Listeria monocytogenes Exploits Host Caveolin for Cell-to-Cell Spreading. MBio, 2020, 11, .	1.8	11
65	In Vitro Ubiquitination: Self-Ubiquitination, Chain Formation, and Substrate Ubiquitination Assays. Methods in Molecular Biology, 2016, 1449, 153-160.	0.4	10
66	USP25 Regulates EGFR Fate by Modulating EGF-Induced Ubiquitylation Dynamics. Biomolecules, 2020, 10, 1548.	1.8	8
67	Hecw controls oogenesis and neuronal homeostasis by promoting the liquid state of ribonucleoprotein particles. Nature Communications, 2021, 12, 5488.	5.8	7
68	The NEDD4 ubiquitin E3 ligase: a snapshot view of its functional activity and regulation. Biochemical Society Transactions, 2022, 50, 473-485.	1.6	7
69	Myosin VI regulates ciliogenesis by promoting the turnover of the centrosomal/satellite protein OFD1. EMBO Reports, 2022, 23, e54160.	2.0	7
70	Strategies to Detect Endogenous Ubiquitination of a Target Mammalian Protein. Methods in Molecular Biology, 2016, 1449, 143-151.	0.4	4
71	Recurrent Spliceosome Mutations in Cancer: Mechanisms and Consequences of Aberrant Splice Site Selection. Cancers, 2022, 14, 281.	1.7	3
72	Detection of ubiquitinated targets in mammalian and Drosophila models. Methods in Enzymology, 2019, 619, 293-318.	0.4	2

#	Article	IF	CITATIONS
73	Multi-step purification strategy for RANTES wild-type and mutated analogues expressed in a baculovirus system. Biomedical Applications, 2000, 737, 47-54.	1.7	1
74	Molecular Mechanism of Ubiquitin-Dependent Traffic. , 2013, , 191-218.		0
75	Endocytosis. , 2011, , 1227-1231.		0
76	Endocytosis. , 2015, , 1-6.		0
77	Endocytosis. , 2015, , 1511-1516.		0
78	Signaling from Internalized Receptors. , 2006, , 89-100.		0

Signaling from Internalized Receptors. , 2006, , 89-100. 78