Ruilin Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2566425/publications.pdf

Version: 2024-02-01

28	996	16	28
papers	citations	h-index	g-index
32	32	32	1640
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	<i>Ankfn1</i> -mutant vestibular defects require loss of both ancestral and derived paralogs for penetrance in zebrafish. G3: Genes, Genomes, Genetics, 2022, 12, .	1.8	O
2	Knockout of Shelterin subunit genes in zebrafish results in distinct outcomes. Biochemical and Biophysical Research Communications, 2022, 617, 22-29.	2.1	1
3	The roles and activation of endocardial Notch signaling in heart regeneration. Cell Regeneration, 2021, 10, 3.	2.6	9
4	Recent Application of Zebrafish Models in Atherosclerosis Research. Frontiers in Cell and Developmental Biology, 2021, 9, 643697.	3.7	12
5	Zebrafish as an animal model for the antiviral RNA interference pathway. Journal of General Virology, 2021, 102, .	2.9	3
6	Inhibition of TGF-β/Smad3 Signaling Disrupts Cardiomyocyte Cell Cycle Progression and Epithelial–Mesenchymal Transition-Like Response During Ventricle Regeneration. Frontiers in Cell and Developmental Biology, 2021, 9, 632372.	3.7	8
7	Hemodynamic Forces Regulate Cardiac Regeneration-Responsive Enhancer Activity during Ventricle Regeneration. International Journal of Molecular Sciences, 2021, 22, 3945.	4.1	7
8	BMP and Notch Signaling Pathways differentially regulate Cardiomyocyte Proliferation during Ventricle Regeneration. International Journal of Biological Sciences, 2021, 17, 2157-2166.	6.4	11
9	Identification of novel candidate genes in heterotaxy syndrome patients with congenital heart diseases by whole exome sequencing. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2020, 1866, 165906.	3.8	18
10	Functional alterations and transcriptomic changes during zebrafish cardiac aging. Biogerontology, 2020, 21, 637-652.	3.9	10
11	Genome-wide screening of functional long noncoding RNAs in the epicardial adipose tissues of atrial fibrillation. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2020, 1866, 165757.	3.8	26
12	Identification of rare variants in novel candidate genes in pulmonary atresia patients by next generation sequencing. Computational and Structural Biotechnology Journal, 2020, 18, 381-392.	4.1	10
13	Primary cilia mediate Klf2-dependant Notch activation in regenerating heart. Protein and Cell, 2020, 11, 433-445.	11.0	22
14	Canonical Wnt5b Signaling Directs Outlying Nkx2.5+ Mesoderm into Pacemaker Cardiomyocytes. Developmental Cell, 2019, 50, 729-743.e5.	7.0	58
15	Zebrafish cysteine and glycine-rich protein 3 is essential for mechanical stability in skeletal muscles. Biochemical and Biophysical Research Communications, 2019, 511, 604-611.	2.1	7
16	Efficacy of Montanideâ,,¢ ISA 763 A VG as aquatic adjuvant administrated with an inactivated Vibrio harveyi vaccine in turbot (Scophthalmus maximus L.). Fish and Shellfish Immunology, 2019, 84, 56-61.	3.6	33
17	Hemodynamic-mediated endocardial signaling controls in vivo myocardial reprogramming. ELife, 2019, 8, .	6.0	30
18	Secretory expression and scale-up production of recombinant human thyroid peroxidase via baculovirus/insect cell system in a wave-type bioreactor. Protein Expression and Purification, 2018, 149, 7-12.	1.3	7

#	ARTICLE	IF	CITATION
19	Sensing of cytosolic LPS through caspy2 pyrin domain mediates noncanonical inflammasome activation in zebrafish. Nature Communications, 2018, 9, 3052.	12.8	49
20	Acetylation promotes TyrRS nuclear translocation to prevent oxidative damage. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 687-692.	7.1	59
21	Coordinating cardiomyocyte interactions to direct ventricular chamber morphogenesis. Nature, 2016, 534, 700-704.	27.8	75
22	The atypical Rho GTPase, RhoU, regulates cell-adhesion molecules during cardiac morphogenesis. Developmental Biology, 2014, 389, 182-191.	2.0	19
23	In vivo cardiac reprogramming contributes to zebrafish heart regeneration. Nature, 2013, 498, 497-501.	27.8	229
24	Depletion of zebrafish Tcap leads to muscular dystrophy via disrupting sarcomere–membrane interaction, not sarcomere assembly. Human Molecular Genetics, 2009, 18, 4130-4140.	2.9	89
25	Transient and transgenic analysis of the zebrafish ventricular myosin heavy chain (⟨i⟩vmhc⟨/i⟩) promoter: An inhibitory mechanism of ventricleâ€specific gene expression. Developmental Dynamics, 2009, 238, 1564-1573.	1.8	27
26	Myofibrillogenesis in the developing zebrafish heart: A functional study of tnnt2. Developmental Biology, 2009, 331, 237-249.	2.0	59
27	Cardiac Hypertrophy Involves Both Myocyte Hypertrophy and Hyperplasia in Anemic Zebrafish. PLoS ONE, 2009, 4, e6596.	2.5	77
28	Wnt3a Regulates the Development of Cardiac Neural Crest Cells by Modulating Expression of Cysteine-Rich Intestinal Protein 2 in Rhombomere 6. Circulation Research, 2008, 102, 831-839.	4. 5	39