Sung Young Park

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2566362/publications.pdf

Version: 2024-02-01

71532 57631 6,821 170 44 76 citations h-index g-index papers 170 170 170 9882 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	<i>In Vivo</i> Biodistribution and Toxicology of Carboxylated Graphene Quantum Dots. ACS Nano, 2013, 7, 6858-6867.	7.3	466
2	Oneâ€Step Multipurpose Surface Functionalization by Adhesive Catecholamine. Advanced Functional Materials, 2012, 22, 2949-2955.	7.8	436
3	Simultaneous Reduction and Surface Functionalization of Graphene Oxide by Musselâ€Inspired Chemistry. Advanced Functional Materials, 2011, 21, 108-112.	7.8	409
4	Attenuation of the i>in vivo i>toxicity of biomaterials by polydopamine surface modification. Nanomedicine, 2011, 6, 793-801.	1.7	262
5	Target Delivery and Cell Imaging Using Hyaluronic Acid-Functionalized Graphene Quantum Dots. Molecular Pharmaceutics, 2013, 10, 3736-3744.	2.3	212
6	Progressive fuzzy cation-Ï€ assembly of biological catecholamines. Science Advances, 2018, 4, eaat7457.	4.7	200
7	Catechol-Grafted Poly(ethylene glycol) for PEGylation on Versatile Substrates. Langmuir, 2010, 26, 3790-3793.	1.6	143
8	pH triggered inÂvivo photothermal therapy and fluorescence nanoplatform of cancer based on responsive polymer-indocyanine green integrated reduced graphene oxide. Biomaterials, 2015, 61, 229-238.	5.7	135
9	Light Controllable Surface Coating for Effective Photothermal Killing of Bacteria. ACS Applied Materials & Samp; Interfaces, 2015, 7, 15600-15606.	4.0	131
10	Microwave-assisted synthesis of luminescent and biocompatible lysine-based carbon quantum dots. Journal of Industrial and Engineering Chemistry, 2017, 47, 329-335.	2.9	131
11	Thermosensitive Pluronic Micelles Stabilized by Shell Cross-Linking with Gold Nanoparticles. Langmuir, 2006, 22, 6380-6384.	1.6	122
12	Lightâ€Induced Swellingâ€Responsive Conductive, Adhesive, and Stretchable Wireless Film Hydrogel as Electronic Artificial Skin. Advanced Functional Materials, 2019, 29, 1903209.	7.8	111
13	Synthesis, Characterization, Antitumor Activity of Pluronic Mimicking Copolymer Micelles Conjugated with Doxorubicin via Acid-Cleavable Linkage. Bioconjugate Chemistry, 2008, 19, 525-531.	1.8	108
14	Diselenide-Bridged Carbon-Dot-Mediated Self-Healing, Conductive, and Adhesive Wireless Hydrogel Sensors for Label-Free Breast Cancer Detection. ACS Nano, 2020, 14, 8409-8420.	7.3	94
15	Fluorescent carbon nanoparticles derived from natural materials of mango fruit for bio-imaging probes. Nanoscale, 2014, 6, 15196-15202.	2.8	87
16	Iron Oxide@PEDOT-Based Recyclable Photothermal Nanoparticles with Poly(vinylpyrrolidone) Sulfobetaines for Rapid and Effective Antibacterial Activity. ACS Applied Materials & Dysterfaces, 2015, 7, 9469-9478.	4.0	84
17	Functionalized biocompatible WO3 nanoparticles for triggered and targeted in vitro and in vivo photothermal therapy. Journal of Controlled Release, 2015, 217, 211-220.	4.8	79
18	Progress in internal/external stimuli responsive fluorescent carbon nanoparticles for theranostic and sensing applications. Journal of Materials Chemistry B, 2018, 6, 1149-1178.	2.9	78

#	Article	IF	Citations
19	Near-infrared-activated Z-scheme NaYF4:Yb/Tm@Ag3PO4/Ag@g-C3N4 photocatalyst for enhanced H2 evolution under simulated solar light irradiation. Chemical Engineering Journal, 2021, 421, 129687.	6.6	77
20	Thermally triggered intracellular explosion of volume transition nanogels for necrotic cell death. Journal of Controlled Release, 2009, 135, 89-95.	4.8	74
21	Photoresponsive Fluorescent Reduced Graphene Oxide by Spiropyran Conjugated Hyaluronic Acid for in Vivo Imaging and Target Delivery. Biomacromolecules, 2013, 14, 4082-4090.	2.6	74
22	Temperature/pH-Sensitive Hydrogels Prepared from Pluronic Copolymers End-Capped with Carboxylic Acid Groups via an Oligolactide Spacer. Macromolecular Rapid Communications, 2007, 28, 1172-1176.	2.0	73
23	pH/redox/photo responsive polymeric micelle via boronate ester and disulfide bonds with spiropyran-based photochromic polymer for cell imaging and anticancer drug delivery. European Polymer Journal, 2014, 57, 1-10.	2.6	68
24	In Vitro and In Vivo Tumor Targeted Photothermal Cancer Therapy Using Functionalized Graphene Nanoparticles. Biomacromolecules, 2015, 16, 3519-3529.	2.6	68
25	pH-Responsive NIR-Absorbing Fluorescent Polydopamine with Hyaluronic Acid for Dual Targeting and Synergistic Effects of Photothermal and Chemotherapy. Biomacromolecules, 2017, 18, 1825-1835.	2.6	67
26	Development of Disulfide Coreâ€Crosslinked Pluronic Nanoparticles as an Effective Anticancerâ€Drugâ€Delivery System. Macromolecular Bioscience, 2011, 11, 1264-1271.	2.1	66
27	Target delivery of \hat{I}^2 -cyclodextrin/paclitaxel complexed fluorescent carbon nanoparticles: externally NIR light and internally pH sensitive-mediated release of paclitaxel with bio-imaging. Journal of Materials Chemistry B, 2015, 3, 5833-5841.	2.9	66
28	Synthesis and characterization of a new photo-crosslinkable glycol chitosan thermogel for biomedical applications. Carbohydrate Polymers, 2016, 144, 59-67.	5.1	65
29	Redox- and pH-responsive fluorescent carbon nanoparticles-MnO2-based FRET system for tumor-targeted drug delivery in vivo and in vitro. Journal of Industrial and Engineering Chemistry, 2018, 63, 208-219.	2.9	64
30	Microwave-assisted synthesis of fluorescent carbon quantum dots from an A ₂ /B ₃ monomer set. RSC Advances, 2017, 7, 12663-12669.	1.7	60
31	Recyclable and stable silver deposited magnetic nanoparticles with poly (vinyl pyrrolidone)-catechol coated iron oxide for antimicrobial activity. Materials Science and Engineering C, 2013, 33, 3786-3794.	3.8	57
32	Preparation of water soluble graphene using polyethylene glycol: Comparison of covalent approach and noncovalent approach. Journal of Industrial and Engineering Chemistry, 2011, 17, 298-303.	2.9	55
33	In situ synthesis of luminescent carbon nanoparticles toward target bioimaging. Nanoscale, 2015, 7, 5468-5475.	2.8	53
34	Direct noncovalent conjugation of folic acid on reduced graphene oxide as anticancer drug carrier. Journal of Industrial and Engineering Chemistry, 2015, 30, 190-196.	2.9	52
35	Simple Microwave-Assisted Synthesis of Amphiphilic Carbon Quantum Dots from A ₃ /B ₂ Polyamidation Monomer Set. ACS Applied Materials & Interfaces, 2017, 9, 27883-27893.	4.0	50
36	Photo―and pHâ€Tunable Multicolor Fluorescent Nanoparticleâ€Based Spiropyran―and BODIPYâ€Conjugated Polymer with Graphene Oxide. Chemistry - an Asian Journal, 2014, 9, 2921-2927.	1.7	49

#	Article	IF	CITATIONS
37	Mineralized Soft and Elastic Polymer Dot Hydrogel for a Flexible Self-Powered Electronic Skin Sensor. ACS Applied Materials & Sensor. ACS ACS Applied Materials & Sensor. ACS Applied Material	4.0	49
38	Successful stabilization of functionalized hybrid graphene for high-performance antimicrobial activity. Acta Biomaterialia, 2013, 9, 7996-8003.	4.1	48
39	Mussel-inspired synthesis of boron nitride nanosheet-supported gold nanoparticles and their application for catalytic reduction of 4-nitrophenol. Nanotechnology, 2015, 26, 105601.	1.3	48
40	Design of Surface-Coatable NIR-Responsive Fluorescent Nanoparticles with PEI Passivation for Bacterial Detection and Killing. ACS Applied Materials & Interfaces, 2017, 9, 33317-33326.	4.0	48
41	Triggered pH/redox responsive release of doxorubicin from prepared highly stable graphene with thiol grafted Pluronic. International Journal of Pharmaceutics, 2013, 450, 208-217.	2.6	46
42	Preparation of biocompatible and antibacterial carbon quantum dots derived from resorcinol and formaldehyde spheres. RSC Advances, 2015, 5, 31677-31682.	1.7	46
43	Boron nitride nanosheets decorated with silver nanoparticles through mussel-inspired chemistry of dopamine. Nanotechnology, 2014, 25, 445603.	1.3	45
44	Surface coated fluorescent carbon nanoparticles/TiO2 as visible-light sensitive photocatalytic complexes for antifouling activity. Carbon, 2016, 103, 412-420.	5.4	45
45	Photoluminescence-tunable fluorescent carbon dots-deposited silver nanoparticle for detection and killing of bacteria. Materials Science and Engineering C, 2019, 97, 613-623.	3.8	44
46	Highly sensitive non-enzymatic wireless glucose sensor based on Ni–Co oxide nanoneedle-anchored polymer dots. Journal of Industrial and Engineering Chemistry, 2020, 89, 485-493.	2.9	44
47	Mitochondria-targeted ROS- and GSH-responsive diselenide-crosslinked polymer dots for programmable paclitaxel release. Journal of Industrial and Engineering Chemistry, 2021, 99, 98-106.	2.9	42
48	pH-Responsible fluorescent carbon nanoparticles for tumor selective theranostics <i>via</i> pH-turn on/off fluorescence and photothermal effect <i>in vivo</i> and <i>in vitro</i> . Nanoscale, 2018, 10, 2512-2523.	2.8	41
49	Wireless electrochemical and luminescent detection of bacteria based on surface-coated CsWO3-immobilized fluorescent carbon dots with photothermal ablation of bacteria. Chemical Engineering Journal, 2021, 403, 126351.	6.6	40
50	Bio-inspired catechol chemistry: a new way to develop a re-moldable and injectable coacervate hydrogel. Chemical Communications, 2012, 48, 11895.	2.2	39
51	Performance of NIR-Mediated Antibacterial Continuous Flow Microreactors Prepared by Mussel-Inspired Immobilization of Cs _{0.33} WO ₃ Photothermal Agents. ACS Applied Materials & District Control of Cs 2017, 9, 3192-3200.	4.0	39
52	Enhancing Light Absorption and Prolonging Charge Separation in Carbon Quantum Dots <i>via</i> Cl-Doping for Visible-Light-Driven Photocharge-Transfer Reactions. ACS Applied Materials & Samp; Interfaces, 2021, 13, 34648-34657.	4.0	39
53	Zwitterionic carbon dot-encapsulating pH-responsive mesoporous silica nanoparticles for NIR light-triggered photothermal therapy through pH-controllable release. Biomaterials Science, 2019, 7, 2600-2610.	2.6	38
54	Thermoâ∈Responsive Assembly of Chemically Reduced Graphene and Poly(<i>N</i> à€isopropylacrylamide). Macromolecular Chemistry and Physics, 2011, 212, 336-341.	1.1	37

#	Article	IF	CITATIONS
55	Highly Efficient Visible Blue-Emitting Black Phosphorus Quantum Dot: Mussel-Inspired Surface Functionalization for Bioapplications. ACS Omega, 2017, 2, 7096-7105.	1.6	37
56	GSH-responsive self-healable conductive hydrogel of highly sensitive strain-pressure sensor for cancer cell detection. Nano Today, 2021, 39, 101178.	6.2	36
57	Mitochondria-targeted fluorescent carbon nano-platform for NIR-triggered hyperthermia and mitochondrial inhibition. Journal of Industrial and Engineering Chemistry, 2017, 55, 224-233.	2.9	35
58	NIR-vis-Induced pH-Sensitive TiO ₂ Immobilized Carbon Dot for Controllable Membrane-Nuclei Targeting and Photothermal Therapy of Cancer Cells. ACS Applied Materials & Lamp; Interfaces, 2020, 12, 37929-37942.	4.0	35
59	Temperature and pHâ€Tunable Fluorescence Nanoplatform with Graphene Oxide and BODIPYâ€Conjugated Polymer for Cell Imaging and Therapy. Macromolecular Rapid Communications, 2013, 34, 1408-1415.	2.0	34
60	Photothermal conversion upon near-infrared irradiation of fluorescent carbon nanoparticles formed from carbonized polydopamine. RSC Advances, 2016, 6, 61482-61491.	1.7	34
61	Pluronic mimicking fluorescent carbon nanoparticles conjugated with doxorubicin via acid-cleavable linkage for tumor-targeted drug delivery and bioimaging. Journal of Industrial and Engineering Chemistry, 2016, 43, 150-157.	2.9	32
62	Phenolic condensation and facilitation of fluorescent carbon dot formation: a mechanism study. Nanoscale, 2017, 9, 16596-16601.	2.8	32
63	Determination of Cancer Cell-Based pH-Sensitive Fluorescent Carbon Nanoparticles of Cross-Linked Polydopamine by Fluorescence Sensing of Alkaline Phosphatase Activity on Coated Surfaces and Aqueous Solution. Analytical Chemistry, 2017, 89, 13508-13517.	3.2	32
64	pH-sensitive fluorescent hyaluronic acid nanogels for tumor-targeting and controlled delivery of doxorubicin and nitric oxide. European Polymer Journal, 2018, 101, 96-104.	2.6	32
65	NIR-induced pH-reversible self-healing monitoring with smartphone by wireless hydrogel sensor. Sensors and Actuators B: Chemical, 2019, 297, 126783.	4.0	32
66	The chemistry and engineering of mussel-inspired glue matrix for tissue adhesive and hemostatic. Journal of Industrial and Engineering Chemistry, 2019, 80, 749-756.	2.9	31
67	Synthesis and Characterization of a Multiâ€Sensitive Crosslinked Injectable Hydrogel Based on Pluronic. Macromolecular Bioscience, 2011, 11, 1594-1602.	2.1	30
68	Boronate-based fluorescent carbon dot for rapid and selectively bacterial sensing by luminescence off/on system. Journal of Pharmaceutical and Biomedical Analysis, 2018, 159, 1-10.	1.4	29
69	Recyclable metal nanoparticle-immobilized polymer dot on montmorillonite for alkaline phosphatase-based colorimetric sensor with photothermal ablation of Bacteria. Analytica Chimica Acta, 2019, 1082, 152-164.	2.6	29
70	Spiropyranâ€Conjugated Pluronic as a Dual Responsive Colorimetric Detector. Macromolecular Rapid Communications, 2012, 33, 1958-1963.	2.0	28
71	pH and redox responsive polymer for antifouling surface coating. Applied Surface Science, 2014, 313, 532-536.	3.1	27
72	Study of photo-induced hydrophilicity and self-cleaning property of glass surfaces immobilized with TiO2 nanoparticles using catechol chemistry. Surface and Coatings Technology, 2016, 294, 75-82.	2.2	27

#	Article	IF	Citations
73	Theranostics dye integrated zwitterionic polymer for in vitro and in vivo photothermal cancer therapy. Journal of Industrial and Engineering Chemistry, 2016, 33, 336-344.	2.9	27
74	Rapid fluorometric bacteria detection assay and photothermal effect by fluorescent polymer of coated surfaces and aqueous state. Biosensors and Bioelectronics, 2017, 89, 1026-1033.	5. 3	26
75	Self-repairable and recyclable self-powered human motion sensor with NIR/pH-responsive amplified Stretchable, Conductive, and Self-Healable hydrogel. Chemical Engineering Journal, 2021, 426, 131846.	6.6	26
76	Target-specific induced hyaluronic acid decorated silica fluorescent nanoparticles@polyaniline for bio-imaging guided near-infrared photothermal therapy. Journal of Materials Chemistry B, 2017, 5, 7099-7108.	2.9	25
77	Injectable and sustained delivery of human growth hormone using chemically modified Pluronic copolymer hydrogels. Biotechnology Journal, 2008, 3, 669-675.	1.8	24
78	Wireless label-free electrochemical detection of cancer cells by MnO2-Decorated polymer dots. Sensors and Actuators B: Chemical, 2020, 320, 128391.	4.0	24
79	Temperature-sensitive hydrogel prepared by graft polymerization of N-isopropylacrylamide onto macroradical Pluronic. Journal of Industrial and Engineering Chemistry, 2012, 18, 321-324.	2.9	22
80	pH-switchable bacteria detection using zwitterionic fluorescent polymer. Biosensors and Bioelectronics, 2017, 90, 394-402.	5 . 3	22
81	Alkaline phosphatase-responsive fluorescent polymer probe coated surface for colorimetric bacteria detection. European Polymer Journal, 2018, 105, 217-225.	2.6	22
82	Visible-Light-Driven Photocatalysts of Perfluorinated Silica-Based Fluorescent Carbon Dot/TiO ₂ for Tunable Hydrophilic–Hydrophobic Surfaces. ACS Applied Materials & Interfaces, 2016, 8, 29827-29834.	4.0	21
83	Tunable Pressure Sensor of <i>f</i> -Carbon Dot-Based Conductive Hydrogel with Electrical, Mechanical, and Shape Recovery for Monitoring Human Motion. ACS Applied Materials & Description (17) amplitudes the Interfaces, 2020, 12, 51766-51775.	4.0	21
84	pH/Redoxâ€Triggered Photothermal Treatment for Cancer Therapy Based on a Dualâ€Responsive Cationic Polymer Dot. ChemMedChem, 2018, 13, 2437-2447.	1.6	20
85	Dual-responsive crosslinked pluronic micelles as a carrier to deliver anticancer drug taxol. Macromolecular Research, 2013, 21, 92-99.	1.0	19
86	Microwave-assisted synthesis of multifunctional fluorescent carbon quantum dots from A4/B2 polyamidation monomer sets. Applied Surface Science, 2021, 542, 148471.	3.1	19
87	Hematoporphyrin Photosensitizer-Linked Carbon Quantum Dots for Photodynamic Therapy of Cancer Cells. ACS Applied Nano Materials, 2022, 5, 4376-4385.	2.4	19
88	pH and thermoâ€responsive poly(<i>N</i> â€isopropylacrylamide) copolymer grafted to poly(ethylene) Tj ETQq0	0 0 rgBT /	Overlock 10
89	Production of graphene oxide from pitch-based carbon fiber. Scientific Reports, 2015, 5, 11707.	1.6	18
90	Nearâ€infraredâ€active and pHâ€responsive fluorescent polymerâ€integrated hybrid graphene oxide nanoparticles for the detection and treatment of cancer. Journal of Applied Polymer Science, 2016, 133,	1.3	18

6

#	Article	IF	CITATIONS
91	Construction of FeCo2O4@N-Doped Carbon Dots Nanoflowers as Binder Free Electrode for Reduction and Oxidation of Water. Materials, 2020, 13, 3119.	1.3	18
92	Cancer cells targeted visible light and alkaline Phosphatase-Responsive TiO2/Cu2+ carbon Dots-Coated wireless electrochemical biosensor. Chemical Engineering Journal, 2021, 417, 129196.	6.6	18
93	Reusable Fe ₃ O ₄ and WO ₃ immobilized onto montmorillonite as a photo-reactive antimicrobial agent. RSC Advances, 2016, 6, 54486-54494.	1.7	17
94	Preparation of dual-responsive hybrid fluorescent nano probe based on graphene oxide and boronic acid/BODIPY-conjugated polymer for cell imaging. Materials Science and Engineering C, 2017, 71, 1064-1071.	3.8	17
95	Membrane and nucleus targeting for highly sensitive cancer cell detection using pyrophosphate and alkaline phosphatase activity-mediated fluorescence switching of functionalized carbon dots. Journal of Materials Chemistry B, 2018, 6, 5992-6001.	2.9	17
96	Simple noncovalent hybridization of polyaniline with graphene and its application for pseudocapacitor. Synthetic Metals, 2015, 209, 60-67.	2.1	16
97	Concentrationâ€mediated multicolor fluorescence polymer carbon dots. Luminescence, 2016, 31, 897-904.	1.5	16
98	Mechanochemical synthesis of fluorescent carbon dots from cellulose powders. Nanotechnology, 2018, 29, 165604.	1.3	16
99	Dualâ€Responsive Carbon Dot for pH/Redoxâ€Triggered Fluorescence Imaging with Controllable Photothermal Ablation Therapy of Cancer. ChemMedChem, 2018, 13, 1459-1468.	1.6	16
100	NIRâ€Mediated Antibacterial Clay Nanocomposites: Exfoliation of Montmorillonite Nanolayers by IR825 Intercalation. Macromolecular Materials and Engineering, 2016, 301, 141-148.	1.7	15
101	Competition between Charge Transport and Energy Barrier in Injection-Limited Metal/Quantum Dot Nanocrystal Contacts. Chemistry of Materials, 2014, 26, 6393-6400.	3.2	14
102	Synthesis and antibacterial activity of versatile substrate-coated biocidal material via catechol chemistry. Surface and Interface Analysis, 2015, 47, 259-264.	0.8	13
103	Preparation of carbon dotâ€based ratiometric fluorescent probes for cellular imaging from <scp><i>Curcuma longa</i></scp> . Luminescence, 2018, 33, 40-46.	1.5	13
104	Photothermal-modulated reversible volume transition of wireless hydrogels embedded with redox-responsive carbon dots. Biomaterials Science, 2019, 7, 4800-4812.	2.6	13
105	Enhanced photothermal bactericidal activity of chemically reduced graphene oxide stabilized by tripodal amphiphile. Applied Surface Science, 2019, 474, 111-117.	3.1	13
106	Light stimulated room-temperature H2S gas sensing ability of Cl-doped carbon quantum dots supported Ag nanoparticles. Carbon, 2022, 196, 337-346.	5.4	13
107	Zwitterionic fluorescent nanoparticles prepared using BODIPY conjugated polysulfobetaines for cancer cell imaging. New Journal of Chemistry, 2013, 37, 3845.	1.4	12
108	Formulation of chemically reduced graphene oxide assembly with poly(4â€vinyl pyridine) through noncovalent interaction. Journal of Applied Polymer Science, 2013, 130, 2538-2543.	1.3	12

#	Article	IF	CITATIONS
109	Tunable and selective detection of cancer cells using a betainized zwitterionic polymer with BODIPY and graphene oxide. New Journal of Chemistry, 2014, 38, 2225-2228.	1.4	12
110	Tuning conductivity and roughness of diselenide polymer dot-coated surface for ROS-mediated selective real-time wireless detection of cancer cells. Chemical Engineering Journal, 2021, 426, 130880.	6.6	12
111	Temperature-dependent Optical Transmittance of Chemically Reduced Graphene Oxide/Hydroxypropyl Cellulose Assembly. Chemistry Letters, 2012, 41, 197-199.	0.7	11
112	Musselâ€Inspired Immobilization of Catalysts for Microchemical Applications. Advanced Materials Interfaces, 2015, 2, 1500174.	1.9	11
113	Selective redox-responsive theragnosis nanocarrier for breast tumor cells mediated by MnO2/fluorescent carbon nanogel. European Journal of Pharmaceutical Sciences, 2019, 134, 256-265.	1.9	11
114	Reusable biosensor-based polymer dot-coated electrode surface for wireless detection of bacterial contamination. Sensors and Actuators B: Chemical, 2021, 346, 130503.	4.0	11
115	Rapid and selective electrochemical sensing of bacterial pneumonia in human sputum based on conductive polymer dot electrodes. Sensors and Actuators B: Chemical, 2022, 368, 132084.	4.0	11
116	New Sol-Gel Transition Hydrogels Based on Pluronic-Mimicking Copolymers Grafted with Oligo(lactic) Tj ETQq0 C	OrgBT/C	verlock 10 T
117	Optimization of enantioselective synthesis of methyl (R)-2-chloromandelate by whole cells of Saccharomyces cerevisiae. Biotechnology Letters, 2010, 32, 1529-1531.	1.1	10
118	Poly(dimethylsiloxane)-protected Silver Nanowire Network for Transparent Conductor with Enhanced Oxidation Resistance and Adhesion Properties. Chemistry Letters, 2013, 42, 191-193.	0.7	10
119	Temperature-sensitive carbon dots derived from poly(N-isopropylacrylamide) for fluorescence on–off properties. RSC Advances, 2017, 7, 11149-11157.	1.7	10
120	Redox-responsive FRET-based polymer dot with BODIPY for fluorescence imaging-guided chemotherapy of tumor. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 132, 200-210.	2.0	10
121	Reduction-Triggered Paclitaxel Release Nano-Hybrid System Based on Core-Crosslinked Polymer Dots with a pH-Responsive Shell-Cleavable Colorimetric Biosensor. International Journal of Molecular Sciences, 2019, 20, 5368.	1.8	10
122	pH-Selective Fluorescent Probe with Photothermal Ablation of Bacteria Based NIR Dye-Embedded Zwitterionic Carbon Dots. Macromolecular Research, 2019, 27, 720-728.	1.0	10
123	High performance of electrochemical and fluorescent probe by interaction of cell and bacteria with pH-sensitive polymer dots coated surfaces. Materials Science and Engineering C, 2019, 101, 159-168.	3.8	10
124	Responsive polymers for medical diagnostics. Journal of Materials Chemistry B, 2020, 8, 6217-6232.	2.9	10
125	Carbon Dots Integrated NiCo ₂ O ₄ Hierarchical Nanoneedle Arrays Supported on Ni Foam as Efficient and Stable Electrode for Hydrogen and Oxygen Evolution Reactions. Electroanalysis, 2020, 32, 2090-2100.	1.5	10
126	Photoâ€switchable spiropyran immobilized polystyrene beads using catechol chemistry. Surface and Interface Analysis, 2017, 49, 759-765.	0.8	9

#	Article	IF	CITATIONS
127	Visible light-responsive mechanically and electronically controllable conductive carbon dot-hydrogel-based pressure-strain sensor for wireless monitoring of antifouling performance. Composites Science and Technology, 2022, 218, 109212.	3.8	9
128	Solubilization of Chemically Reduced Graphene Oxide Using Coffee Catechol. Chemistry Letters, 2013, 42, 189-190.	0.7	8
129	Synthesis of Î ² -FeOOH/Fe3O4 hybrid photocatalyst using catechol-quaternized poly(N-vinyl pyrrolidone) as a double-sided molecular tape. Journal of Materials Science, 2017, 52, 8493-8501.	1.7	8
130	Musselâ€Inspired Polymer Grafting on CsPbBr 3 Perovskite Quantum Dots Enhancing the Environmental Stability. Particle and Particle Systems Characterization, 2019, 36, 1900332.	1.2	8
131	Room-temperature Sinterable Silver Nanoparticle Ink with Low-molecular-weight Poly(<i>N</i> -vinylpyrrolidone) Ligand. Chemistry Letters, 2013, 42, 232-234.	0.7	7
132	Surface patterned pH-sensitive fluorescence using \hat{l}^2 -cyclodextrin functionalized poly(ethylene glycol). Carbohydrate Polymers, 2016, 147, 436-443.	5.1	7
133	Visible-light-driven photocatalysis with dopamine-derivatized titanium dioxide/N-doped carbon core/shell nanoparticles. Journal of Materials Science, 2017, 52, 5582-5588.	1.7	7
134	Chronic wound-dressing chitosan-polyphenolic patch for pH responsive local antibacterial activity. Materials Today Communications, 2022, 31, 103310.	0.9	7
135	Herceptin conjugated PCL-PEG-PCL triblock copolymer for cancer targeting and imaging. Macromolecular Research, 2012, 20, 875-882.	1.0	6
136	P.146L: <i>Lateâ€News Poster</i> : Practical Approach of New Photoalignment Material for High Qualityâ€Competitive Retardation Film. Digest of Technical Papers SID International Symposium, 2013, 44, 1362-1364.	0.1	6
137	Mussel-inspired Engineering of an Anodized Aluminum Oxide Membrane. Chemistry Letters, 2013, 42, 902-903.	0.7	6
138	Formulation of Silver Nanowire–Reduced Graphene Oxide Hybrid Transparent Electrodes by Using Catechol-functionalized Poly(vinylpyrrolidone). Chemistry Letters, 2014, 43, 723-725.	0.7	6
139	Visualization of Noncovalent Interaction between Aliphatic Dendrimers and Chemically Reduced Graphene Oxide. Chemistry Letters, 2015, 44, 665-667.	0.7	6
140	Photocatalytic Activity of Titanium Dioxide Nanoparticles Linked on Chemically Reduced Graphene Oxide through Mussel-inspired Chemistry. Chemistry Letters, 2015, 44, 1068-1070.	0.7	6
141	Facile preparation of metal nanoparticle-coated polystyrene beads by catechol conjugated polymer. Surface and Interface Analysis, 2015, 47, 253-258.	0.8	6
142	Tumor microenvironment-responsive touch sensor-based pH-triggered controllable conductive hydrogel. Applied Materials Today, 2021, 25, 101259.	2.3	6
143	Conductive membrane sensor-based temperature and pressure responsive f-polymer dot hydrogels. Composites Part B: Engineering, 2022, 234, 109755.	5.9	6
144	Ultraviolet–Ozone-Activation-Driven Ag Nanoparticles Grown on Plastic Substrates for Antibacterial Applications. ACS Applied Nano Materials, 2022, 5, 8767-8774.	2.4	6

#	Article	lF	Citations
145	Formulation of Silver Nanowire–Polyaniline Hybrid Transparent Electrodes by Using Catechol-enriched Polyaniline. Chemistry Letters, 2014, 43, 1453-1455.	0.7	5
146	Superior Photocatalytic Activity of Titanium Dioxide Nanoparticles Linked on Single-walled Carbon Nanotubes through Mussel-inspired Chemistry. Chemistry Letters, 2014, 43, 1806-1808.	0.7	5
147	Preparation of exfoliated montmorillonite nanocomposites with catechol/zwitterionic quaternized polymer for an antifouling coating. Polymer Engineering and Science, 2015, 55, 2111-2117.	1.5	5
148	Environmentally Friendly Synthesis of pâ€Doped Reduced Graphene Oxide with High Dispersion Stability by Using Red Table Wine. Chemistry - an Asian Journal, 2015, 10, 1192-1197.	1.7	5
149	Synthesis and antibacterial activity of surfaceâ€coated catecholâ€conjugated polymer with silver nanoparticles on versatile substrate. Surface and Interface Analysis, 2016, 48, 995-1001.	0.8	5
150	Microwave-assisted Synthesis of Highly Fluorescent and Biocompatible Silicon Nanoparticles Using Glucose as Dual Roles of Reducing Agents and Hydrophilic Ligands. Chemistry Letters, 2017, 46, 398-400.	0.7	5
151	Synthesis of catechol-functionalized polymer–based crosslinked thermoresponsive hydrogels for tissue-adhesive material. Journal of Bioactive and Compatible Polymers, 2018, 33, 310-320.	0.8	5
152	Novel Sterecomplexed Sol–Gel Transition Hydrogels Prepared from Physical Packing of Self-Assembled PEO-PPO-PEO and PPO-PEO-PPO Copolymer Nanoscale Micelles. Journal of Nanoscience and Nanotechnology, 2008, 8, 5236-5241.	0.9	4
153	Chemically Reduced Graphene Oxide with Crosslinked Shell Showing Enhanced Environmental Stability Using Thiol-grafted Pluronic. Chemistry Letters, 2013, 42, 200-201.	0.7	4
154	Real-Time Wireless Monitoring of Cell Proliferation and Detachment Based on pH-Responsive Conductive Polymer Dots. Analytical Chemistry, 2021, 93, 8638-8646.	3.2	4
155	Chlorinating cleavage of silicon–naphthyl bonds of polycarbosilane, and introduction of poly(ethylene glycol) graft copolymer micelles. Journal of Industrial and Engineering Chemistry, 2010, 16, 560-563.	2.9	3
156	Photocatalytic Effect of TiO2 Nanoparticles on Room-temperature Sinterable Silver Nanoparticle Ink with Poly(<i>N</i> -vinylpyrrolidone) Ligand. Chemistry Letters, 2013, 42, 649-650.	0.7	3
157	Soluble Chemically Reduced Graphene Oxide Assembly with High-molecular-weight Poly(ethylene) Tj ETQq $1\ 1\ 0.7$	784314 rg 0.7	BT _g /Overlock
158	Correction to Simple Microwave-Assisted Synthesis of Amphiphilic Carbon Quantum Dots from A3/B2 Polyamidation Monomer Set. ACS Applied Materials & Interfaces, 2018, 10, 3153-3153.	4.0	3
159	Cellular Delivery of siRNA Using Poly(2-dimethylaminoethyl methacrylate)- Functionalized Graphene Oxide Nano-Wrap. Macromolecular Research, 2018, 26, 1115-1122.	1.0	3
160	Preparation of stable dispersions of chemically reduced graphene oxide through noncovalent interactions with poly(N-isopropyl acrylamide)-grafted pluronic copolymer. Journal of Materials Science, 2013, 48, 3357-3362.	1.7	2
161	Fluorescent Micropatterning of Betainized Zwitterionic Polymer Bearing Mussel-inspired Catechol Moiety and Borondipyttomethane Fluorophores. Chemistry Letters, 2013, 42, 1511-1513.	0.7	2
162	Photoresponsive Modulation of Mass Transfer through Spiropyran-grafted Anodized Aluminum Oxide Membrane. Chemistry Letters, 2014, 43, 1540-1541.	0.7	2

#	Article	lF	CITATIONS
163	Facile Noncovalent Formulation of Organo-soluble Chemically Reduced Graphene Oxide/Semiconducting Polymer Assembly. Chemistry Letters, 2015, 44, 685-687.	0.7	2
164	Microwave-assisted Synthesis of Fluorescent Polymer Dots from Hyperbranched Polyethylenimine and Glycerol. Chemistry Letters, 2017, 46, 1463-1465.	0.7	2
165	Preparation of cross-linked biodegradable copolymers based polycarbanion of 3-arm PL(D)LA with brominated pluronic and stereocomplex mediated gelation behavior. , 2012, , .		1
166	Antimicrobial activity of water resistant surface coating from catechol conjugated polyquaternary amine on versatile substrates. Journal of Applied Polymer Science, 2014, 131, .	1.3	1
167	Hybridization of Polyaniline on Sulfonated Graphene for an Electrochemical Supercapacitor. Chemistry Letters, 2015, 44, 217-219.	0.7	1
168	Specific Streptavidin Binding on Biotinylated Chemically Reduced Graphene Oxide. Chemistry Letters, 2015, 44, 922-924.	0.7	1
169	P.2: New Approach of Flexible Eâ€Paper with Single Particles. Digest of Technical Papers SID International Symposium, 2013, 44, 993-994.	0.1	O
170	Functionalization and Polymerization of Surface Coated Substrate with Catechol Conjugated Polymer. Science of Advanced Materials, 2014, 6, 2511-2516.	0.1	0