Baolong Shen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2566338/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cobalt-based bulk glassy alloy with ultrahigh strength and soft magnetic properties. Nature Materials, 2003, 2, 661-663.	13.3	514
2	Super-high strength of over 4000 MPa for Fe-based bulk glassy alloys in [(Fe1â^'xCox)0.75B0.2Si0.05]96Nb4 system. Acta Materialia, 2004, 52, 4093-4099.	3.8	436
3	Ultra-high strength above 5000 MPa and soft magnetic properties of Co–Fe–Ta–B bulk glassy alloys. Acta Materialia, 2004, 52, 1631-1637.	3.8	226
4	Superhigh strength and good soft-magnetic properties of (Fe,Co)–B–Si–Nb bulk glassy alloys with high glass-forming ability. Applied Physics Letters, 2004, 85, 4911-4913.	1.5	204
5	Fe- and Co-based bulk glassy alloys with ultrahigh strength of over 4000MPa. Intermetallics, 2006, 14, 936-944.	1.8	204
6	Soft Magnetic Bulk Classy Fe-B-Si-Nb Alloys with High Saturation Magnetization above 1.5 T. Materials Transactions, 2002, 43, 766-769.	0.4	161
7	Mechanical properties and structural features of novel Fe-based bulk metallic glasses with unprecedented plasticity. Scientific Reports, 2014, 4, 6233.	1.6	118
8	Developments and Applications of Bulk Glassy Alloys in Late Transition Metal Base System. Materials Transactions, 2006, 47, 1275-1285.	0.4	114
9	Excellent soft-ferromagnetic bulk glassy alloys with high saturation magnetization. Applied Physics Letters, 2006, 88, 131907.	1.5	94
10	Investigation of FePC amorphous alloys with self-renewing behaviour for highly efficient decolorization of methylene blue. Journal of Materials Chemistry A, 2018, 6, 10686-10699.	5.2	93
11	Controllable spin-glass behavior and large magnetocaloric effect in Gd-Ni-Al bulk metallic glasses. Applied Physics Letters, 2012, 101, .	1.5	89
12	Formation and Functional Properties of Fe-Based Bulk Glassy Alloys. Materials Transactions, 2001, 42, 970-978.	0.4	86
13	Development and applications of Fe- and Co-based bulk glassy alloys and their prospects. Journal of Alloys and Compounds, 2014, 615, S2-S8.	2.8	82
14	Microstructural evolution of a ductile metastable \hat{I}^2 titanium alloy with combined TRIP/TWIP effects. Journal of Alloys and Compounds, 2017, 699, 775-782.	2.8	76
15	Bulk Glassy Fe-Ga-P-C-B-Si Alloys with High Glass-Forming Ability, High Saturation Magnetization and Good Soft Magnetic Properties. Materials Transactions, 2002, 43, 1235-1239.	0.4	74
16	Co–Fe–B–Si–Nb bulk glassy alloys with superhigh strength and extremely low magnetostriction. Applied Physics Letters, 2006, 88, 011901.	1.5	72
17	Formation, ductile deformation behavior and soft-magnetic properties of (Fe,Co,Ni)–B–Si–Nb bulk glassy alloys. Intermetallics, 2007, 15, 9-16.	1.8	69
18	Strong and ductile beta Ti–18Zr–13Mo alloy with multimodal twinning. Materials Research Letters, 2019. 7, 251-257	4.1	69

#	Article	IF	CITATIONS
19	Development of quaternary Fe-based bulk metallic glasses with high saturation magnetization above 1.6T. Journal of Non-Crystalline Solids, 2012, 358, 1443-1446.	1.5	67
20	Microstructure and soft-magnetic properties of FeCoPCCu nanocrystalline alloys. Journal of Materials Science and Technology, 2019, 35, 1655-1661.	5.6	67
21	Non-noble metal-based amorphous high-entropy oxides as efficient and reliable electrocatalysts for oxygen evolution reaction. Nano Research, 2022, 15, 8751-8759.	5.8	61
22	Effects of Si and Mo additions on glass-forming inFeGaPCBbulk glassy alloys with high saturation magnetization. Physical Review B, 2006, 73, .	1.1	60
23	High <i>B s</i> Fe84â^' <i>x</i> Si4B8P4Cu <i>x</i> (<i>x</i> = 0 – 1.5) nanocrystallir excellent magnetic softness. Journal of Applied Physics, 2011, 109, .	ne alloys v I.1	vith ₅₉
24	Distinct spin glass behavior and excellent magnetocaloric effect in Er 20 Dy 20 Co 20 Al 20 RE 20 (RE =) Tj ETQq	000 rgB⊺ 1.8	[/Overlock 10
25	Gd25RE25Co25Al25 (RE =†Tb, Dy and Ho) high-entropy glassy alloys with distinct spin-glass behavior and good magnetocaloric effect. Journal of Alloys and Compounds, 2019, 790, 633-639.	2.8	55
26	Effects of Cr addition on thermal stability, soft magnetic properties and corrosion resistance of FeSiB amorphous alloys. Corrosion Science, 2018, 138, 20-27.	3.0	54
27	Fabrication and characterization of a novel \hat{l}^2 metastable Ti-Mo-Zr alloy with large ductility and improved yield strength. Materials Characterization, 2018, 139, 421-427.	1.9	53
28	FeNi-based bulk glassy alloys with superhigh mechanical strength and excellent soft-magnetic properties. Applied Physics Letters, 2006, 89, 051912.	1.5	52
29	A novel thermal-tuning Fe-based amorphous alloy for automatically recycled methylene blue degradation. Materials and Design, 2019, 161, 136-146.	3.3	51
30	Soft magnetic properties in Fe84â´`xB10C6Cux nanocrystalline alloys. Journal of Magnetism and Magnetic Materials, 2013, 326, 22-27.	1.0	49
31	Synthesis of novel FeSiBPCCu alloys with high amorphous forming ability and good soft magnetic properties. Journal of Non-Crystalline Solids, 2019, 503-504, 36-43.	1.5	49
32	Fe-based bulk glassy alloy composite containing in situ formed α-(Fe,Co) and (Fe,Co)23B6 microcrystalline grains. Applied Physics Letters, 2006, 89, 101915.	1.5	47
33	Soft magnetic properties and microstructure of Fe84â^'Nb2B14Cu nanocrystalline alloys. Materials & Design, 2014, 56, 227-231.	5.1	47
34	Enhancement of plasticity for FeCoBSiNb bulk metallic glass with superhigh strength through cryogenic thermal cycling. Scripta Materialia, 2020, 187, 13-18.	2.6	47
35	Excellent soft-magnetic properties of (Fe,Co)–Mo–(P,C,B,Si) bulk glassy alloys with ductile deformation behavior. Applied Physics Letters, 2007, 91, .	1.5	46
36	Effects of Cu substitution for Fe on the glass-forming ability and soft magnetic properties for Fe-based bulk metallic glasses. Journal of Magnetism and Magnetic Materials, 2014, 358-359, 23-26.	1.0	45

#	Article	IF	CITATIONS
37	Superhigh strength and excellent soft-magnetic properties of [(Co1â^'xFex)0.75B0.2Si0.05]96Nb4 bulk glassy alloys. Journal of Applied Physics, 2006, 100, 013515.	1.1	41
38	Soft Magnetic Properties of Nanocrystalline Fe–Co–B–Si–Nb–Cu Alloys in Ribbon and Bulk Forms. Journal of Materials Research, 2003, 18, 2799-2806.	1.2	39
39	Magnetic properties of (Fe1â^'xNix)72B20Si4Nb4 (x=0.0–0.5) bulk metallic glasses. Journal of Magnetism and Magnetic Materials, 2013, 335, 172-176.	1.0	38
40	Effect of Tb addition on the thermal stability, glass-forming ability and magnetic properties of Fe–B–Si–Nb bulk metallic glass. Journal of Alloys and Compounds, 2014, 586, S46-S49.	2.8	38
41	Enhanced glass forming ability of Fe-based amorphous alloys with minor Cu addition. Journal of Non-Crystalline Solids, 2015, 419, 65-68.	1.5	38
42	Enhancement of glass-forming ability of FeCoNiBSiNb bulk glassy alloys with superhigh strength and good soft-magnetic properties. Journal of Applied Physics, 2007, 102, 023515.	1.1	35
43	High Bs of FePBCCu nanocrystalline alloys with excellent soft-magnetic properties. Journal of Non-Crystalline Solids, 2020, 530, 119800.	1.5	35
44	A plastic FeNi-based bulk metallic glass and its deformation behavior. Journal of Materials Science and Technology, 2021, 76, 20-32.	5.6	35
45	Bulk Glassy Co ₄₃ Fe ₂₀ Ta _{5.5} B _{31.5} Alloy with High Glass-Forming Ability and Good Soft Magnetic Properties. Materials Transactions, 2001, 42, 2136-2139.	0.4	34
46	Crystallization behavior and magnetic properties in High Fe content FeBCSiCu alloy system. Journal of Magnetism and Magnetic Materials, 2015, 385, 277-281.	1.0	34
47	Impact of hybridization on metallic-glass formation and design. Materials Today, 2020, 32, 26-34.	8.3	34
48	Excellent reusability of FeBC amorphous ribbons induced by progressive formation of through-pore structure during acid orange 7 degradation. Journal of Materials Science and Technology, 2020, 38, 107-118.	5.6	34
49	Enhancement of the fracture strength and glass-forming ability of CoFeTaB bulk glassy alloy. Journal of Physics Condensed Matter, 2005, 17, 5647-5653.	0.7	33
50	Thermal stability, magnetic and mechanical properties of Fe–Dy–B–Nb bulk metallic glasses with high glass-forming ability. Intermetallics, 2014, 46, 85-90.	1.8	33
51	Effect of Co addition on the magnetic properties and microstructure of FeNbBCu nanocrystalline alloys. Journal of Magnetism and Magnetic Materials, 2016, 419, 198-201.	1.0	33
52	Effect of Dy, Ho, and Er substitution on the magnetocaloric properties of Gd-Co-Al-Y high entropy bulk metallic glasses. Journal of Alloys and Compounds, 2020, 827, 154101.	2.8	32
53	Extraordinary magnetocaloric effect of Fe-based bulk glassy rods by combining fluxing treatment and J-quenching technique. Journal of Alloys and Compounds, 2016, 684, 29-33.	2.8	31
54	Enhancement of glass-forming ability of CoFeBSiNb bulk glassy alloys with excellent soft-magnetic properties and superhigh strength. Intermetallics, 2010, 18, 1876-1879.	1.8	30

#	Article	IF	CITATIONS
55	(Co1â^'xFex)68B21.9Si5.1Nb5 bulk glassy alloys with high glass-forming ability, excellent soft-magnetic properties and superhigh fracture strength. Intermetallics, 2012, 23, 63-67.	1.8	30
56	Effect of Co addition on catalytic activity of FePCCu amorphous alloy for methylene blue degradation. New Journal of Chemistry, 2019, 43, 6126-6135.	1.4	30
57	Magnetically separable Z-scheme FeSiB metallic glass/g-C3N4 heterojunction photocatalyst with high degradation efficiency at universal pH conditions. Applied Surface Science, 2021, 540, 148401.	3.1	30
58	Mechanical Properties and Phase Stability of WTaMoNbTi Refractory High-Entropy Alloy at Elevated Temperatures. Acta Metallurgica Sinica (English Letters), 2021, 34, 1585-1590.	1.5	30
59	Ductile FeNi-based bulk metallic glasses with high strength and excellent soft magnetic properties. Journal of Alloys and Compounds, 2018, 742, 318-324.	2.8	29
60	In-situ scattering study of a liquid-liquid phase transition in Fe-B-Nb-Y supercooled liquids and its correlation with glass-forming ability. Journal of Alloys and Compounds, 2019, 787, 831-839.	2.8	29
61	High Strength and Good Soft Magnetic Properties of Bulk Glassy Fe–Mo–Ga–P–C–B Alloys with High Glass-Forming Ability. Materials Transactions, JIM, 2000, 41, 1478-1481.	0.9	28
62	Fe-based nanocrystalline FeBCCu soft magnetic alloys with high magnetic flux density. Journal of Applied Physics, 2011, 109, .	1.1	28
63	Competitive Effects of Structural Heterogeneity and Surface Chemical States on Catalytic Efficiency of FeSiBPCu Amorphous and Nanocrystalline Alloys. ACS Applied Nano Materials, 2019, 2, 214-227.	2.4	28
64	Effect of B to P concentration ratio on glass-forming ability and soft-magnetic properties in [(Fe0.5Ni0.5)0.78B0.22â^'xPx]97Nb3 glassy alloys. Intermetallics, 2012, 20, 93-97.	1.8	27
65	Pronounced enhancement of glass-forming ability of Fe–Si–B–P bulk metallic glass in oxygen atmosphere. Journal of Materials Research, 2014, 29, 1217-1222.	1.2	27
66	Ductile Co–Nb–B bulk metallic glass with ultrahigh strength. Journal of Non-Crystalline Solids, 2014, 386, 121-123.	1.5	27
67	Strengthening strain-transformable β Ti-alloy via multi-phase nanostructuration. Journal of Alloys and Compounds, 2019, 799, 389-397.	2.8	27
68	Making Fe-Si-B amorphous powders as an effective catalyst for dye degradation by high-energy ultrasonic vibration. Materials and Design, 2020, 194, 108876.	3.3	27
69	FePCCu nanocrystalline alloys with excellent soft magnetic properties. Science China Technological Sciences, 2012, 55, 3419-3424.	2.0	26
70	Enhancement of plasticity in Co–Nb–B ternary bulk metallic glasses with ultrahigh strength. Journal of Non-Crystalline Solids, 2012, 358, 3060-3064.	1.5	25
71	Effects of Ni and Si additions on mechanical properties and serrated flow behavior in FeMoPCB bulk metallic glasses. Journal of Alloys and Compounds, 2019, 783, 555-564.	2.8	25
72	Thermal, structural and soft magnetic properties of FeSiBPCCu alloys. Journal of Non-Crystalline Solids, 2020, 533, 119941.	1.5	25

#	Article	IF	CITATIONS
73	Enhanced dye degradation capability and reusability of Fe-based amorphous ribbons by surface activation. Journal of Materials Science and Technology, 2020, 53, 163-173.	5.6	25
74	Synthesis of bulk glassy alloys in the (Fe,Co,Ni)–B–Si–Nb system. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 449-451, 239-242.	2.6	24
75	Effect of Ni addition on the glass-forming ability and soft-magnetic properties of FeNiBPNb metallic glasses. Science Bulletin, 2011, 56, 3932-3936.	1.7	24
76	Enhancement of plastic deformation in FeCoNbB bulk metallic glass with superhigh strength. Intermetallics, 2013, 32, 408-412.	1.8	24
77	Effect of Fe substitution on magnetocaloric effects and glass-forming ability in Gd-based metallic glasses. Intermetallics, 2018, 93, 67-71.	1.8	24
78	A novel FeNi-based bulk metallic glass with high notch toughness over 70ÂMPaÂm1/2 combined with excellent soft magnetic properties. Materials and Design, 2020, 191, 108597.	3.3	24
79	Composition Effect on Intrinsic Plasticity or Brittleness in Metallic Classes. Scientific Reports, 2014, 4, 5733.	1.6	23
80	Influence of dynamic compressive loading on the in vitro degradation behavior of pure PLA and Mg/PLA composite. Acta Biomaterialia, 2017, 64, 269-278.	4.1	23
81	Effect of Nb addition on the glass-forming ability, mechanical and soft-magnetic properties in (Co0.942Fe0.058)72â^'xNbxB22.4Si5.6 bulk glassy alloys. Journal of Alloys and Compounds, 2010, 504, S31-S33.	2.8	22
82	The effect of Fe/Al ratio on the thermal stability and magnetocaloric effect of Gd55FexAl45-x (x = 15– glassy ribbons. Journal of Applied Physics, 2012, 111, 07A937.	35) 1.1	22
83	Effects of Cu substitution for Nb on magnetic properties of Fe-based bulk metallic glasses. Journal of Non-Crystalline Solids, 2016, 443, 108-111.	1.5	22
84	Effects of Cu additions on mechanical and soft-magnetic properties of CoFeBSiNb bulk metallic glasses. Journal of Alloys and Compounds, 2018, 737, 815-820.	2.8	22
85	Structure and Magnetic Properties of Fe _{42.5} Co _{42.5} Nb ₇ B ₈ Nanocrystalline Alloy. Materials Transactions, 2002, 43, 589-592.	0.4	21
86	Soft-ferromagnetic bulk glassy alloys with large magnetostriction and high glass-forming ability. AIP Advances, 2011, 1, .	0.6	21
87	FeNiPBNb bulk glassy alloys with good soft-magnetic properties. Journal of Alloys and Compounds, 2012, 536, S354-S358.	2.8	21
88	A new CoFe-based bulk metallic glasses with high thermoplastic forming ability. Scripta Materialia, 2013, 69, 553-556.	2.6	21
89	Pronounced nanoindentation creep deformation in Cu-doped CoFe-based metallic glasses. Journal of Alloys and Compounds, 2019, 806, 246-253.	2.8	21
90	Efficient rejuvenation of heterogeneous {[(Fe0.5Co0.5)0.75B0.2Si0.05]96Nb4}99.9Cu0.1 bulk metallic glass upon cryogenic cycling treatment. Journal of Materials Science and Technology, 2022, 97, 20-28.	5.6	21

#	Article	IF	CITATIONS
91	Excellent magnetic softness-magnetization synergy and suppressed defect activation in soft magnetic amorphous alloys by magnetic field annealing. Journal of Materials Science and Technology, 2022, 116, 72-82.	5.6	21
92	Non-repeatability of large plasticity for Fe-based bulk metallic glasses. Journal of Alloys and Compounds, 2016, 676, 209-214.	2.8	20
93	Fluxing induced boron alloying in Fe-based bulk metallic glasses. Materials and Design, 2017, 129, 63-68.	3.3	20
94	The role of Co/Al ratio in glass-forming GdCoAl magnetocaloric metallic glasses. Materialia, 2019, 7, 100419.	1.3	20
95	Development of FeNiNbSiBP bulk metallic glassy alloys with excellent magnetic properties and high glass forming ability evaluated by different criterions. Intermetallics, 2016, 71, 1-6.	1.8	19
96	Effects of structural relaxation on the dye degradation ability of FePC amorphous alloys. Journal of Non-Crystalline Solids, 2019, 525, 119671.	1.5	19
97	Ductile Co-based bulk metallic glass with superhigh strength and excellent soft magnetic properties induced by modulation of structural heterogeneity. Materialia, 2020, 9, 100561.	1.3	19
98	Effect of Yttrium addition on magnetocaloric properties of Gd-Co-Al-Ho high entropy metallic glasses. Journal of Non-Crystalline Solids, 2020, 549, 120354.	1.5	19
99	Enhancement of glass-forming ability of Fe-based bulk metallic glasses with high saturation magnetic flux density. AIP Advances, 2012, 2, .	0.6	18
100	Liquid dynamics and glass formation of Gd55Co20Al25 metallic glass with minor Si addition. Journal of Materials Science and Technology, 2021, 77, 28-37.	5.6	18
101	Nanoscale Heterogeneities of Non-Noble Iron-Based Metallic Glasses toward Efficient Water Oxidation at Industrial-Level Current Densities. ACS Applied Materials & Interfaces, 2022, 14, 10288-10297.	4.0	18
102	Thermal stability and crystallization behavior of (Fe0.75â^xDyxB0.2Si0.05)96Nb4 (x=0–0.07) bulk metallic glasses. Journal of Non-Crystalline Solids, 2013, 365, 42-46.	1.5	17
103	Nearly free electron model to glass-forming ability of multi-component metallic glasses. Journal of Non-Crystalline Solids, 2013, 361, 82-85.	1.5	17
104	Facile synthesis of 3D binder-free N-doped carbon nanonet derived from silkworm cocoon for Li–O2 battery. Journal of Materials Science, 2018, 53, 4395-4405.	1.7	17
105	Atomic-scale heterogeneity in large-plasticity Cu-doped metallic glasses. Journal of Alloys and Compounds, 2019, 798, 517-522.	2.8	17
106	Anelastic and viscoplastic deformation in a Fe-based metallic glass. Journal of Alloys and Compounds, 2021, 853, 157233.	2.8	17
107	An Ultrafast and Stable High-Entropy Metallic Glass Electrode for Alkaline Hydrogen Evolution Reaction. , 2022, 4, 1389-1396.		17
108	Effects of B and Si contents on glass-forming ability and soft-magnetic properties in (Co0.89Fe0.057Nb0.053)100â^x(B0.8Si0.2)x glassy alloys. Journal of Applied Physics, 2010, 107, .	1.1	15

#	Article	IF	CITATIONS
109	Defects activation in CoFe-based metallic glasses during creep deformation. Journal of Materials Science and Technology, 2021, 69, 42-47.	5.6	15
110	Influence of Si on tribological behavior of laser cladded Fe-based amorphous/crystalline composite coatings. Surface and Coatings Technology, 2021, 405, 126570.	2.2	15
111	Heterogeneous GdTbDyCoAl high-entropy alloy with distinctive magnetocaloric effect induced by hydrogenation. Journal of Materials Science and Technology, 2022, 109, 147-156.	5.6	15
112	Glass-forming ability and soft magnetic properties of (Co0.6Fe0.3Ni0.1)67B22+xSi6â^'xNb5 bulk glassy alloys. Journal of Alloys and Compounds, 2011, 509, S206-S209.	2.8	14
113	Origin of abnormal glass transition behavior in metallic glasses. Intermetallics, 2014, 49, 52-56.	1.8	14
114	Ultrasonic-assisted plastic flow in a Zr-based metallic glass. Science China Materials, 2021, 64, 448-459.	3.5	14
115	Effects of heavy rare-earth addition on glass-forming ability, thermal, magnetic, and mechanical properties of Fe-RE-B-Nb (RE = Dy, Ho, Er or Tm) bulk metallic glass. Journal of Non-Crystalline Solids, 2019, 525, 119681.	1.5	13
116	Oxygen-driven impurities scavenging before solidification of Fe-based metallic glasses. Journal of Alloys and Compounds, 2019, 773, 401-412.	2.8	13
117	Correlation between deformation behavior and atomic-scale heterogeneity in Fe-based bulk metallic glasses. Journal of Materials Science and Technology, 2021, 65, 54-60.	5.6	13
118	Effects of minor Si addition on structural heterogeneity and glass formation of GdDyErCoAl high-entropy bulk metallic glass. Journal of Materials Research and Technology, 2021, 11, 378-391.	2.6	13
119	Improved catalytic efficiency and stability by surface activation in Fe-based amorphous alloys for hydrogen evolution reaction in acidic electrolyte. Electrochimica Acta, 2021, 390, 138815.	2.6	13
120	Structures and properties of the (NbMoTaW)100â^'xCx high-entropy composites. Journal of Alloys and Compounds, 2021, 889, 161645.	2.8	13
121	Crystallization behaviors of FeSiBPMo bulk metallic glasses. Journal of Non-Crystalline Solids, 2013, 360, 31-35.	1.5	12
122	The effect of Ni addition on microstructure and soft magnetic properties of FeCoZrBCu nanocrystalline alloys. AIP Advances, 2017, 7, .	0.6	12
123	Effects of Ni substitution for Fe/Co on mechanical and magnetic properties of Co-based bulk metallic glasses. Journal of Alloys and Compounds, 2020, 820, 153105.	2.8	12
124	Magnetic properties and crystallization behavior of nanocrystalline FeSiBPCuAl alloys. Science China Technological Sciences, 2010, 53, 1590-1593.	2.0	11
125	Ab initio simulations of the atomic and electronic environment around B in Fe–Nb–B metallic glasses. Intermetallics, 2019, 112, 106501.	1.8	11
126	Enhanced glass-forming ability of FeCoBSiNb bulk glassy alloys prepared using commercial raw materials through the optimization of Nb content. Journal of Applied Physics, 2010, 107, 09A315.	1.1	10

#	Article	IF	CITATIONS
127	Giant magnetoimpedance effect in stress-joule-heated Co-based amorphous ribbons. Science China: Physics, Mechanics and Astronomy, 2012, 55, 2372-2377.	2.0	10
128	Effect of Fe to P concentration ratio on structures, crystallization behavior, and magnetic properties in (Fe0.79+xP0.1â^'xC0.04B0.04Si0.03)99Cu1 alloys. Journal of Applied Physics, 2013, 113, 17A337.	1.1	10
129	Thermal, magnetic and magnetocaloric properties of FeErNbB metallic glasses with high glass-forming ability. Journal of Non-Crystalline Solids, 2019, 512, 184-188.	1.5	10
130	Low-Temperature Magnetic Properties and Magnetocaloric Effect of Fe–Zr–Cu Amorphous Alloys. Journal of Low Temperature Physics, 2020, 200, 51-61.	0.6	10
131	WReTaMo Refractory Highâ€Entropy Alloy with High Strength at 1600 °C. Advanced Engineering Materials, 2022, 24, 2100765.	1.6	10
132	Utilization of high entropy in rare earth-based magnetocaloric metallic glasses. Journal of Materials Research and Technology, 2022, 18, 5301-5311.	2.6	10
133	The influence of Si substitution on soft magnetic properties and crystallization behavior in Fe83B10C6â°'x Si x Cu1 alloy system. Science China Technological Sciences, 2012, 55, 2416-2419.	2.0	9
134	Effects of Ho addition on thermal stability, thermoplastic deformation and magnetic properties of FeHoNbB bulk metallic glasses. Journal of Alloys and Compounds, 2019, 807, 151675.	2.8	9
135	Magnetocaloric difference between ribbon and bulk shape of Gd-based metallic glasses. Journal of Magnetism and Magnetic Materials, 2020, 497, 166015.	1.0	9
136	Microstructures and mechanical properties of (Nb0.25Mo0.25Ta0.25W0.25)C and (Nb0.2Mo0.2Ta0.2W0.2Hf0.2)C high-entropy carbide ceramics produced by arc melting. International Journal of Refractory Metals and Hard Materials, 2022, 107, 105859.	1.7	9
137	Shear band evolution during large plastic deformation of brittle and ductile metallic glasses. Philosophical Magazine Letters, 2010, 90, 573-579.	0.5	8
138	Glass-Forming Ability and Magnetocaloric Effect in \${m Gd}_{55}{m Co}_{20}{m Al}_{25-{m x}} m Si}_{m Si}_{m x} Bulk Metallic Glass. IEEE Transactions on Magnetics, 2011, 47, 2490-2493.	1.2	8
139	Electronic structure of Cu100â^'xZrx (x=40,50,60) metallic glasses. Materials and Design, 2015, 82, 126-129.	3.3	8
140	Correlation among the amorphous forming ability, viscosity, free-energy difference and interfacial tension in Fe–Si–B–P soft magnetic alloys. Journal of Alloys and Compounds, 2020, 831, 154784.	2.8	8
141	Combined effect of demagnetization field and magnetic anisotropy on magnetocaloric behavior and magnetocaloric-magnetoresistance correlation in GdTmErCoAl high-entropy amorphous alloy. Journal of Magnetism and Magnetic Materials, 2021, 528, 167817.	1.0	8
142	Preparation and magnetic properties of (Co0.6Fe0.3Ni0.1)70â^'x (B0.811Si0.189)25+x Nb5 bulk glassy alloys. Journal of Materials Science: Materials in Electronics, 2015, 26, 7006-7012.	1.1	7
143	Effect of magnetic field annealing on soft magnetic properties of Co71Fe2Si14- <i>x</i> B9+ <i>x</i> Mn4 amorphous alloys with low permeability. AIP Advances, 2018, 8, .	0.6	7
144	Enhanced plasticity of FeCoBSiNb bulk glassy alloys by controlling the structure heterogeneity with Cu addition. Journal of Non-Crystalline Solids, 2019, 505, 181-187.	1.5	7

#	Article	IF	CITATIONS
145	Formation, structure and properties of pseudo-high entropy clustered bulk metallic glasses. Journal of Alloys and Compounds, 2020, 820, 153164.	2.8	7
146	Effects of Si addition on glass-forming ability and crystallization behavior of DyCoAl bulk metallic glass. Journal of Alloys and Compounds, 2021, 874, 159964.	2.8	7
147	Tunable magnetocaloric effect in Gd-based metallic glasses microalloying elements with different magnetism. Journal of Non-Crystalline Solids, 2022, 576, 121222.	1.5	7
148	Rejuvenation-to-Relaxation Transition Induced by Elastostatic Compression and Its Effect on Deformation Behavior in a Zr-Based Bulk Metallic Glass. Metals, 2022, 12, 282.	1.0	7
149	Synthesis of WTaMoNbZr refractory high-entropy alloy powder by plasma spheroidization process for additive manufacturing. Journal of Alloys and Compounds, 2022, 917, 165501.	2.8	7
150	Numerical Investigation of Particles in Warm-Particle Peening-Assisted High-Velocity Oxygen Fuel (WPPA-HVOF) Spraying. Journal of Thermal Spray Technology, 2020, 29, 1682-1694.	1.6	6
151	Magnetocaloric performance and its linear relationship with magnetoresistance in Gd-Al-Cu metallic glass. Journal of Magnetism and Magnetic Materials, 2020, 507, 166828.	1.0	6
152	Atomic-scale structural heterogeneity and elastic modulus for metallic glasses. Journal of Non-Crystalline Solids, 2015, 426, 137-140.	1.5	5
153	Effect of Magnetic Field Annealing on Microstructure and Magnetic Properties of FeCuNbSiB Nanocrystalline Magnetic Core with High Inductance. Applied Microscopy, 2017, 47, 29-35.	0.8	5
154	Nanocrystallization induced by quasi-static fracture of metallic glasses at room temperature. Philosophical Magazine Letters, 2008, 88, 837-843.	0.5	4
155	In Situ Synchrotron X-ray Diffraction Investigations of the Nonlinear Deformation Behavior of a Low Modulus β-Type Ti36Nb5Zr Alloy. Metals, 2020, 10, 1619.	1.0	4
156	Nanoscale-to-Mesoscale Heterogeneity and Percolating Favored Clusters Govern Ultrastability of Metallic Glasses. Nano Letters, 2022, , .	4.5	4
157	Tunability of correlated magnetocaloric effect and magnetoresistance by Ar ion irradiation in a Gd-based nanocrystalline/amorphous alloy. Journal of Alloys and Compounds, 2019, 788, 283-288.	2.8	3
158	Effect of Ni Substitution for Si Element on Thermal and Soft Magnetic Properties of Fe73.5NixSi15.5-xB7Nb3Cu1 Nanocrystalline Alloys. Journal of Electronic Materials, 2021, 50, 4577-4585.	1.0	3
159	Serrated flow behavior induced by blunt mechanism of shear crack propagation in metallic glass. Journal of Materials Research, 2009, 24, 436-440.	1.2	2
160	Large Glass-forming Ability and Magnetocaloric Effect in Gd55Co20Al23Si2Bulk Metallic Glass. Journal of Magnetics, 2011, 16, 440-443.	0.2	2
161	Tuning magnetocaloric effect of Gd-Co-Al-Si bulk metallic glass via controlling degree of structural order. Journal of Magnetism and Magnetic Materials, 2022, 545, 168769.	1.0	2
162	The soft magnetic properties of ring-shaped (Co0.6Fe0.3Ni0.1)68(B0.811Si0.189)27Nb5 bulk metallic glasses. Journal of Applied Physics, 2013, 113, 17A336.	1.1	1

#	Article	IF	CITATIONS
163	Effects of C/B ratio on glass-forming ability and low-temperature magnetic behavior of FeCoCrMoCBTm metallic glass. Journal of Alloys and Compounds, 2021, 864, 158211.	2.8	1
164	Pressure-induced spin crossover in a Fe78Si9B13 metallic glass. Journal of Applied Physics, 2021, 129, .	1.1	1
165	Quantifying a partial polyamorphic transition in a cerium-based metallic glass during cooling. Journal of Applied Physics, 2021, 130, 145901.	1.1	1
166	Co Doping and High Pressure Studies of the Iron Arsenide La _{0.4} Na _{0.6} Fe ₂ As ₂ . Journal of the Physical Society of Japan, 2020, 89, 055001.	0.7	1
167	Electronic specific heats for amorphous and crystallized alloys. SpringerPlus, 2016, 5, 699.	1.2	Ο