
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2566309/publications.pdf Version: 2024-02-01

FDIR CHEVING

#	Article	IF	CITATIONS
1	Image contrast improvement through a metaheuristic scheme. Soft Computing, 2023, 27, 13657-13676.	3.6	5
2	Using Bayesian optimization algorithm for model-based integration testing. Soft Computing, 2022, 26, 3503-3525.	3.6	5
3	COVID-19 detection from CT scans using a two-stage framework. Expert Systems With Applications, 2022, 193, 116377.	7.6	42
4	AltWOA: Altruistic Whale Optimization Algorithm for feature selection on microarray datasets. Computers in Biology and Medicine, 2022, 144, 105349.	7.0	47
5	Visual attention-based deepfake video forgery detection. Pattern Analysis and Applications, 2022, 25, 981-992.	4.6	12
6	An agent-based transmission model of COVID-19 for re-opening policy design. Computers in Biology and Medicine, 2022, 148, 105847.	7.0	12
7	Efficient image segmentation through 2D histograms and an improved owl search algorithm. International Journal of Machine Learning and Cybernetics, 2021, 12, 131-150.	3.6	6
8	Learning classical and metaheuristic optimization techniques by using an educational platform based on LEGO robots. International Journal of Electrical Engineering and Education, 2021, 58, 286-305.	0.8	7
9	Anisotropic diffusion filtering through multi-objective optimization. Mathematics and Computers in Simulation, 2021, 181, 410-429.	4.4	8
10	Fast multi-feature image segmentation. Applied Mathematical Modelling, 2021, 90, 742-757.	4.2	11
11	Moth Swarm Algorithm for Image Contrast Enhancement. Knowledge-Based Systems, 2021, 212, 106607.	7.1	19
12	Hyperparameter Optimization in a Convolutional Neural Network Using Metaheuristic Algorithms. Studies in Computational Intelligence, 2021, , 37-59.	0.9	13
13	Blood Vessel Segmentation Using Differential Evolution Algorithm. Studies in Computational Intelligence, 2021, , 151-167.	0.9	3
14	Metaheuristic Algorithm Based on Hybridization of Invasive Weed Optimization asnd Estimation Distribution Methods. Studies in Computational Intelligence, 2021, , 63-123.	0.9	0
15	Introductory Concepts of Metaheuristic Computation. Studies in Computational Intelligence, 2021, , 1-9.	0.9	0
16	Corner Detection Algorithm Based on Cellular Neural Networks (CNN) and Differential Evolution (DE). Studies in Computational Intelligence, 2021, , 125-149.	0.9	1
17	Optimal Operation of the Voltage-Doubler Boost Converter through an Evolutionary Algorithm. Mathematics, 2021, 9, 423.	2.2	2
18	A mean shift segmentation scheme using several pixel characteristics. Computers and Electrical Engineering, 2021, 90, 107022.	4.8	1

#	Article	IF	CITATIONS
19	Search Patterns Based on Trajectories Extracted from the Response of Second-Order Systems. Applied Sciences (Switzerland), 2021, 11, 3430.	2.5	3
20	Group-based synchronous-asynchronous Grey Wolf Optimizer. Applied Mathematical Modelling, 2021, 93, 226-243.	4.2	17
21	Robust Clustering Routing Method for Wireless Sensor Networks Considering the Locust Search Scheme. Energies, 2021, 14, 3019.	3.1	11
22	Population management in metaheuristic algorithms: Could less be more?. Applied Soft Computing Journal, 2021, 107, 107389.	7.2	12
23	An improved opposition-based marine predators algorithm for global optimization and multilevel thresholding image segmentation. Knowledge-Based Systems, 2021, 229, 107348.	7.1	92
24	Harris Hawks optimisation with Simulated Annealing as a deep feature selection method for screening of COVID-19 CT-scans. Applied Soft Computing Journal, 2021, 111, 107698.	7.2	49
25	Evolutionary-Mean shift algorithm for dynamic multimodal function optimization. Applied Soft Computing Journal, 2021, 113, 107880.	7.2	10
26	Thresholding Algorithm Applied toÂChest X-Ray Images with Pneumonia. Studies in Computational Intelligence, 2021, , 359-407.	0.9	1
27	A Metaheuristic Scheme Based on the Hunting Model of Yellow Saddle Goatfish. Studies in Computational Intelligence, 2021, , 11-61.	0.9	1
28	An Enhanced Swarm Method Based on the Locust Search Algorithm. Intelligent Systems Reference Library, 2021, , 9-38.	1.2	1
29	Differential Evolution Based Algorithm for Optimal Current Ripple Cancelation in an Unequal Interleaved Power Converter. Mathematics, 2021, 9, 2755.	2.2	3
30	Introductory Concepts of Metaheuristic Computation. Intelligent Systems Reference Library, 2021, , 1-8.	1.2	0
31	Experimental Analysis Between Exploration and Exploitation. Intelligent Systems Reference Library, 2021, , 249-269.	1.2	2
32	A Metaheuristic Methodology Based on Fuzzy Logic Principles. Intelligent Systems Reference Library, 2021, , 39-89.	1.2	0
33	A Metaheuristic Computation Scheme to Solve Energy Problems. Intelligent Systems Reference Library, 2021, , 91-120.	1.2	0
34	A States of Matter Search-Based Scheme to Solve the Problem of Power Allocation in Plug-in Electric Cars. Intelligent Systems Reference Library, 2021, , 161-176.	1.2	0
35	Locus Search Method for Power Loss Reduction on Distribution Networks. Intelligent Systems Reference Library, 2021, , 177-206.	1.2	0
36	Blood Vessel and Optic Disc Segmentation Based on a Metaheuristic Method. Intelligent Systems Reference Library, 2021, , 207-228.	1.2	0

#	Article	IF	CITATIONS
37	The Locust Swarm Optimization Algorithm. Intelligent Systems Reference Library, 2020, , 139-159.	1.2	25
38	An Introduction to Nature-Inspired Metaheuristics and Swarm Methods. Intelligent Systems Reference Library, 2020, , 1-41.	1.2	3
39	The Selfish Herd Optimizer. Intelligent Systems Reference Library, 2020, , 69-109.	1.2	3
40	From ants to whales: metaheuristics for all tastes. Artificial Intelligence Review, 2020, 53, 753-810.	15.7	109
41	Locust Search Algorithm Applied to Multi-threshold Segmentation. Intelligent Systems Reference Library, 2020, , 211-240.	1.2	7
42	Metaheuristics and Swarm Methods: A Discussion on Their Performance and Applications. Intelligent Systems Reference Library, 2020, , 43-67.	1.2	2
43	Multimodal Swarm Algorithm Based on the Collective Animal Behavior (CAB) for Circle Detection. Intelligent Systems Reference Library, 2020, , 241-278.	1.2	0
44	A hybrid optimization approach based on clustering and chaotic sequences. International Journal of Machine Learning and Cybernetics, 2020, 11, 359-401.	3.6	22
45	Reducing overlapped pixels: a multi-objective color thresholding approach. Soft Computing, 2020, 24, 6787-6807.	3.6	10
46	A novel hybrid metaheuristic optimization method: hypercube natural aggregation algorithm. Soft Computing, 2020, 24, 8823-8856.	3.6	5
47	Side-Blotched Lizard Algorithm: A polymorphic population approach. Applied Soft Computing Journal, 2020, 88, 106039.	7.2	27
48	An Evolutionary Approach to Improve the Halftoning Process. Mathematics, 2020, 8, 1636.	2.2	3
49	Numerical Optimization of Switching Ripples in the Double Dual Boost Converter through the Evolutionary Algorithm L-SHADE. Mathematics, 2020, 8, 1911.	2.2	4
50	A new metaheuristic approach based on agent systems principles. Journal of Computational Science, 2020, 47, 101244.	2.9	9
51	Comparison of Circular Symmetric Low-Pass Digital IIR Filter Design Using Evolutionary Computation Techniques. Mathematics, 2020, 8, 1226.	2.2	4
52	An Evolutionary Algorithm-Based PWM Strategy for a Hybrid Power Converter. Mathematics, 2020, 8, 1247.	2.2	3
53	A Competitive Swarm Algorithm for Image Segmentation Guided by Opposite Fuzzy Entropy. , 2020, , .		3
54	An Improved Grey Wolf Optimizer for a Supplier Selection and Order Quantity Allocation Problem. Mathematics, 2020, 8, 1457.	2.2	5

#	Article	IF	CITATIONS
55	A better balance in metaheuristic algorithms: Does it exist?. Swarm and Evolutionary Computation, 2020, 54, 100671.	8.1	165
56	A Competitive Memory Paradigm for Multimodal Optimization Driven by Clustering and Chaos. Mathematics, 2020, 8, 934.	2.2	0
57	An Enhanced Crow Search Algorithm Applied to Energy Approaches. Studies in Computational Intelligence, 2020, , 27-49.	0.9	4
58	Comparison of Solar Cells Parameters Estimation Using Several Optimization Algorithms. Studies in Computational Intelligence, 2020, , 51-95.	0.9	4
59	An agent-based model to evaluate the COVID-19 transmission risks in facilities. Computers in Biology and Medicine, 2020, 121, 103827.	7.0	224
60	Locust Search Algorithm Applied for Template Matching. Intelligent Systems Reference Library, 2020, , 279-296.	1.2	0
61	Auto-calibration of Fractional Fuzzy Controllers by Using the Swarm Social-Spider Method. Intelligent Systems Reference Library, 2020, , 189-209.	1.2	0
62	Neighborhood Based Optimization Algorithm. Studies in Computational Intelligence, 2020, , 183-243.	0.9	0
63	Fuzzy Logic Based Optimization Algorithm. Studies in Computational Intelligence, 2020, , 135-181.	0.9	2
64	Knowledge-Based Optimization Algorithm. Studies in Computational Intelligence, 2020, , 245-277.	0.9	0
65	An improved Simulated Annealing algorithm based on ancient metallurgy techniques. Applied Soft Computing Journal, 2019, 84, 105761.	7.2	29
66	A Modified Crow Search Algorithm with Applications to Power System Problems. Studies in Computational Intelligence, 2019, , 137-166.	0.9	5
67	A hybrid evolutionary approach based on the invasive weed optimization and estimation distribution algorithms. Soft Computing, 2019, 23, 13627-13668.	3.6	4
68	An opposition-based social spider optimization for feature selection. Soft Computing, 2019, 23, 13547-13567.	3.6	41
69	Corner detection of intensity images with cellular neural networks (CNN) and evolutionary techniques. Neurocomputing, 2019, 347, 82-93.	5.9	17
70	Metaheuristics Algorithms in Power Systems. Studies in Computational Intelligence, 2019, , .	0.9	8
71	An optimization algorithm guided by a machine learning approach. International Journal of Machine Learning and Cybernetics, 2019, 10, 2963-2991.	3.6	12
72	A reactive model based on neighborhood consensus for continuous optimization. Expert Systems With Applications, 2019, 121, 115-141.	7.6	4

#	Article	IF	CITATIONS
73	Image segmentation by minimum cross entropy using evolutionary methods. Soft Computing, 2019, 23, 431-450.	3.6	38
74	A selection method for evolutionary algorithms based on the Golden Section. Expert Systems With Applications, 2018, 106, 183-196.	7.6	20
75	Advances in Metaheuristics Algorithms: Methods and Applications. Studies in Computational Intelligence, 2018, , .	0.9	3
76	Calibration of Fractional Fuzzy Controllers by Using the Social-Spider Method. Studies in Computational Intelligence, 2018, , 35-55.	0.9	1
77	Identification of Fractional Chaotic Systems by Using the Locust Search Algorithm. Studies in Computational Intelligence, 2018, , 77-92.	0.9	1
78	Metaheuristic Algorithms Based on Fuzzy Logic. Studies in Computational Intelligence, 2018, , 167-218.	0.9	0
79	Electromagnetism-like mechanism with collective animal behavior for multimodal optimization. Applied Intelligence, 2018, 48, 2580-2612.	5.3	8
80	Improving multi-criterion optimization with chaos: a novel Multi-Objective Chaotic Crow Search Algorithm. Neural Computing and Applications, 2018, 29, 319-335.	5.6	45
81	A Multimodal Optimization Algorithm Inspired by the States of Matter. Neural Processing Letters, 2018, 48, 517-556.	3.2	14
82	Remote sensing imagery segmentation based on multi-objective optimization algorithms. , 2018, , .		1
83	Social Spider Optimization Algorithm: Modifications, Applications, and Perspectives. Mathematical Problems in Engineering, 2018, 2018, 1-29.	1.1	31
84	A Swarm Approach for Improving Voltage Profiles and Reduce Power Loss on Electrical Distribution Networks. IEEE Access, 2018, 6, 49498-49512.	4.2	32
85	A novel bio-inspired optimization model based on Yellow Saddle Goatfish behavior. BioSystems, 2018, 174, 1-21.	2.0	56
86	Entropy-based imagery segmentation for breast histology using the Stochastic Fractal Search. Neurocomputing, 2018, 321, 201-215.	5.9	49
87	Computational Intelligence in Image Processing 2018. Mathematical Problems in Engineering, 2018, 2018, 1-3.	1.1	2
88	Ls-II: An Improved Locust Search Algorithm for Solving Optimization Problems. Mathematical Problems in Engineering, 2018, 2018, 1-15.	1.1	13
89	An Improved Crow Search Algorithm Applied to Energy Problems. Energies, 2018, 11, 571. Improved Unsupervised Color Segmentation Using a Modified <mml:math< td=""><td>3.1</td><td>85</td></mml:math<>	3.1	85
90	xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M1"> <mml:mi>H</mml:mi> <mml:mi>S</mml:mi> <mml:mi>V</mml:mi> Color Model and a Bagging Procedure in <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">id="M2"><mml:mrow><mml:mi>K</mml:mi>mrow></mml:mrow></mml:math> -Means++ Algorithm. Mathematical Problems in Engineering, 2018, 2018, 1-23.	1.1	2

#	Article	IF	CITATIONS
91	Real-time video thresholding using evolutionary techniques and cross entropy. , 2018, , .		3
92	Unassisted thresholding based on multi-objective evolutionary algorithms. Knowledge-Based Systems, 2018, 159, 221-232.	7.1	14
93	A multi-level thresholding method for breast thermograms analysis using Dragonfly algorithm. Infrared Physics and Technology, 2018, 93, 346-361.	2.9	85
94	Thermal Image Segmentation Using Evolutionary Computation Techniques. Studies in Computational Intelligence, 2018, , 63-88.	0.9	11
95	Nonlinear system identification based on ANFIS-Hammerstein model using Gravitational search algorithm. Applied Intelligence, 2018, 48, 182-203.	5.3	43
96	Multimodal States of Matter Search. Studies in Computational Intelligence, 2018, , 119-165.	0.9	0
97	The States of Matter Search (SMS). Studies in Computational Intelligence, 2018, , 93-118.	0.9	0
98	Multilevel Segmentation in Digital Images. Studies in Computational Intelligence, 2017, , 9-33.	0.9	1
99	Multi-circle Detection on Images. Studies in Computational Intelligence, 2017, , 35-64.	0.9	3
100	Evolutionary calibration of fractional fuzzy controllers. Applied Intelligence, 2017, 47, 291-303.	5.3	11
101	A new descriptor for image matching based on bionic principles. Pattern Analysis and Applications, 2017, 20, 1245-1259.	4.6	15
102	Cross entropy based thresholding for magnetic resonance brain images using Crow Search Algorithm. Expert Systems With Applications, 2017, 79, 164-180.	7.6	162
103	Engineering Applications of Soft Computing. Intelligent Systems Reference Library, 2017, , .	1.2	4
104	Electromagnetism—Like Optimization Algorithm: An Introduction. Intelligent Systems Reference Library, 2017, , 23-41.	1.2	0
105	Digital Image Segmentation as an Optimization Problem. Intelligent Systems Reference Library, 2017, , 43-91.	1.2	3
106	Template Matching Using a Physical Inspired Algorithm. Intelligent Systems Reference Library, 2017, , 93-111.	1.2	1
107	An EMO Improvement: Opposition-Based Electromagnetism-Like for Global Optimization. Intelligent Systems Reference Library, 2017, , 159-178.	1.2	1
108	Filter Design. Studies in Computational Intelligence, 2017, , 205-222.	0.9	2

#	Article	IF	CITATIONS
109	A new metaheuristic optimization methodology based on fuzzy logic. Applied Soft Computing Journal, 2017, 61, 549-569.	7.2	28
110	A global optimization algorithm inspired in the behavior of selfish herds. BioSystems, 2017, 160, 39-55.	2.0	135
111	A States of Matter Search-Based Approach for Solving the Problem of Intelligent Power Allocation in Plug-in Hybrid Electric Vehicles. Energies, 2017, 10, 92.	3.1	16
112	A Chaos-Embedded Gravitational Search Algorithm for the Identification of Electrical Parameters of Photovoltaic Cells. Energies, 2017, 10, 1052.	3.1	15
113	Motion Estimation Algorithm Using Block-Matching and Harmony Search Optimization. Intelligent Systems Reference Library, 2017, , 13-44.	1.2	4
114	A template matching approach based on the behavior of swarms of locust. Applied Intelligence, 2017, 47, 1087-1098.	5.3	14
115	Parameter Estimation for Chaotic Fractional Systems by Using the Locust Search Algorithm. Computacion Y Sistemas, 2017, 21, .	0.3	7
116	Flower Pollination Algorithm for Multimodal Optimization. International Journal of Computational Intelligence Systems, 2017, 10, 627.	2.7	24
117	Motion Estimation. Studies in Computational Intelligence, 2017, , 95-116.	0.9	0
118	Photovoltaic Cell Design. Studies in Computational Intelligence, 2017, , 117-138.	0.9	0
119	Estimation of View Transformations in Images. Studies in Computational Intelligence, 2017, , 181-204.	0.9	Ο
120	Artificial Bee Colony Algorithm Applied to Multi-threshold Segmentation. Intelligent Systems Reference Library, 2017, , 193-214.	1.2	0
121	An Optimization Based Approach for Maximizing the Information Content of Keypoints Detected on a Digital Image. , 2016, , .		4
122	Computational Intelligence in Image Processing 2016. Mathematical Problems in Engineering, 2016, 2016, 1-3.	1.1	0
123	A Multiobjective Approach to Homography Estimation. Computational Intelligence and Neuroscience, 2016, 2016, 1-12.	1.7	5
124	Reduction of Function Evaluations by using an evolutionary computation algorithm. Studies in Computational Intelligence, 2016, , 121-152.	0.9	0
125	Advances of Evolutionary Computation: Methods and Operators. Studies in Computational Intelligence, 2016, , .	0.9	3
126	Image Segmentation Using an Evolutionary Method Based on Allostatic Mechanisms. Studies in Computational Intelligence, 2016, , 255-279.	0.9	1

#	Article	IF	CITATIONS
127	Circle Detection on Images Based on an Evolutionary Algorithm that Reduces the Number of Function Evaluations. Intelligent Systems Reference Library, 2016, , 139-167.	1.2	2
128	Otsu and Kapur Segmentation Based on Harmony Search Optimization. Intelligent Systems Reference Library, 2016, , 169-202.	1.2	7
129	Leukocyte Detection by Using Electromagnetism-like Optimization. Intelligent Systems Reference Library, 2016, , 203-227.	1.2	0
130	Motion Estimation Based on Artificial Bee Colony (ABC). Intelligent Systems Reference Library, 2016, , 23-51.	1.2	0
131	Estimation of Multiple View Relations Considering Evolutionary Approaches. Intelligent Systems Reference Library, 2016, , 107-138.	1.2	0
132	Multithreshold Segmentation by Using an Algorithm Based on the Behavior of Locust Swarms. Mathematical Problems in Engineering, 2015, 2015, 1-25.	1.1	38
133	Applying BAT Evolutionary Optimization to Image-Based Visual Servoing. Mathematical Problems in Engineering, 2015, 2015, 1-11.	1.1	1
134	A Method for Estimating View Transformations from Image Correspondences Based on the Harmony Search Algorithm. Computational Intelligence and Neuroscience, 2015, 2015, 1-15.	1.7	4
135	An optimisation algorithm based on the behaviour of locust swarms. International Journal of Bio-Inspired Computation, 2015, 7, 402.	0.9	43
136	Improving segmentation velocity using an evolutionary method. Expert Systems With Applications, 2015, 42, 5874-5886.	7.6	23
137	A Cuckoo Search Algorithm for Multimodal Optimization. Scientific World Journal, The, 2014, 2014, 1-20.	2.1	31
138	Template matching using an improved electromagnetism-like algorithm. Applied Intelligence, 2014, 41, 791-807.	5.3	12
139	A Comparison of Evolutionary Computation Techniques for IIR Model Identification. Journal of Applied Mathematics, 2014, 2014, 1-9.	0.9	43
140	A Multilevel Thresholding algorithm using electromagnetism optimization. Neurocomputing, 2014, 139, 357-381.	5.9	137
141	A new algorithm inspired in the behavior of the social-spider for constrained optimization. Expert Systems With Applications, 2014, 41, 412-425.	7.6	128
142	An optimization algorithm inspired by the States of Matter that improves the balance between exploration and exploitation. Applied Intelligence, 2014, 40, 256-272.	5.3	181
143	A model for the gray-intensity distribution of historical handwritten documents and its application for binarization. International Journal on Document Analysis and Recognition, 2014, 17, 139-160.	3.4	5
144	Multi-ellipses detection on images inspired by collective animal behavior. Neural Computing and Applications, 2014, 24, 1019-1033.	5.6	18

#	Article	IF	CITATIONS
145	An analysis of the transition proportion for binarization in handwritten historical documents. Pattern Recognition, 2014, 47, 2635-2651.	8.1	9
146	Parameter identification of solar cells using artificial bee colony optimization. Energy, 2014, 72, 93-102.	8.8	375
147	An optimization algorithm for multimodal functions inspired by collective animal behavior. Soft Computing, 2013, 17, 489-502.	3.6	24
148	Block-matching algorithm based on harmony search optimization for motion estimation. Applied Intelligence, 2013, 39, 165-183.	5.3	41
149	Multi-circle detection on images inspired by collective animal behavior. Applied Intelligence, 2013, 39, 101-120.	5.3	15
150	A novel evolutionary algorithm inspired by the states of matter for template matching. Expert Systems With Applications, 2013, 40, 6359-6373.	7.6	55
151	A swarm optimization algorithm inspired in the behavior of the social-spider. Expert Systems With Applications, 2013, 40, 6374-6384.	7.6	464
152	Circle Detection on Images Using Learning Automata. Studies in Computational Intelligence, 2013, , 545-570.	0.9	7
153	Circle Detection Algorithm Based on Electromagnetism-Like Optimization. Intelligent Systems Reference Library, 2013, , 907-934.	1.2	2
154	Image Segmentation Using Artificial Bee Colony Optimization. Intelligent Systems Reference Library, 2013, , 965-990.	1.2	9
155	An optimization for binarization methods by removing binary artifacts. Pattern Recognition Letters, 2013, 34, 1299-1306.	4.2	12
156	A comparison of nature inspired algorithms for multi-threshold image segmentation. Expert Systems With Applications, 2013, 40, 1213-1219.	7.6	138
157	Block matching algorithm for motion estimation based on Artificial Bee Colony (ABC). Applied Soft Computing Journal, 2013, 13, 3047-3059.	7.2	54
158	Block-matching algorithm based on differential evolution for motion estimation. Engineering Applications of Artificial Intelligence, 2013, 26, 488-498.	8.1	48
159	Automatic Circle Detection on Images Based on an Evolutionary Algorithm That Reduces the Number of Function Evaluations. Mathematical Problems in Engineering, 2013, 2013, 1-17.	1.1	2
160	A Swarm Optimization Algorithm for Multimodal Functions and Its Application in Multicircle Detection. Mathematical Problems in Engineering, 2013, 2013, 1-22.	1.1	7
161	An Educational Fuzzy-Based Control Platform Using LEGO Robots. International Journal of Electrical Engineering and Education, 2013, 50, 157-171.	0.8	9
162	Multilevel Thresholding Segmentation Based on Harmony Search Optimization. Journal of Applied Mathematics, 2013, 2013, 1-24.	0.9	110

#	Article	IF	CITATIONS
163	White Blood Cell Segmentation by Circle Detection Using Electromagnetism-Like Optimization. Computational and Mathematical Methods in Medicine, 2013, 2013, 1-15.	1.3	21
164	Computational Intelligence in Image Processing. Mathematical Problems in Engineering, 2013, 2013, 1-3.	1.1	0
165	An Improved Computer Vision Method for White Blood Cells Detection. Computational and Mathematical Methods in Medicine, 2013, 2013, 1-14.	1.3	21
166	Segmentation of Blood Cell Images Using Evolutionary Methods. Advances in Intelligent Systems and Computing, 2013, , 299-311.	0.6	1
167	Fast Circle Detection Using Harmony Search Optimization. Advances in Intelligent Systems and Computing, 2013, , 313-325.	0.6	Ο
168	Multithreshold Segmentation Based on Artificial Immune Systems. Mathematical Problems in Engineering, 2012, 2012, 1-20.	1.1	18
169	An Algorithm for Global Optimization Inspired by Collective Animal Behavior. Discrete Dynamics in Nature and Society, 2012, 2012, 1-24.	0.9	57
170	A multi-threshold segmentation approach based on Artificial Bee Colony optimization. Applied Intelligence, 2012, 37, 321-336.	5.3	92
171	Circle Detection by Harmony Search Optimization. Journal of Intelligent and Robotic Systems: Theory and Applications, 2012, 66, 359-376.	3.4	43
172	Circle detection using electro-magnetism optimization. Information Sciences, 2012, 182, 40-55.	6.9	103
173	Automatic multiple circle detection based on artificial immune systems. Expert Systems With Applications, 2012, 39, 713-722.	7.6	31
174	Multi-circle detection on images using artificial bee colony (ABC) optimization. Soft Computing, 2012, 16, 281-296.	3.6	51
175	Segmentation with Learning Automata. , 2011, , .		3
176	Circle detection using discrete differential evolution optimization. Pattern Analysis and Applications, 2011, 14, 93-107.	4.6	55
177	Seeking multi-thresholds for image segmentation with Learning Automata. Machine Vision and Applications, 2011, 22, 805-818.	2.7	42
178	Unsupervised measures for parameter selection of binarization algorithms. Pattern Recognition, 2011, 44, 491-502.	8.1	12
179	Learning Automata in Control Planning Strategies. Studies in Computational Intelligence, 2011, , 27-54.	0.9	0
180	A novel multi-threshold segmentation approach based on differential evolution optimization. Expert Systems With Applications, 2010, 37, 5265-5271.	7.6	137

#	Article	IF	CITATIONS
181	Transition thresholds and transition operators for binarization and edge detection. Pattern Recognition, 2010, 43, 3243-3254.	8.1	23
182	Transition pixel: A concept for binarization based on edge detection and gray-intensity histograms. Pattern Recognition, 2010, 43, 1233-1243.	8.1	46
183	Low-Cost Commercial Legoâ,,¢ Platform for Mobile Robotics. International Journal of Electrical Engineering and Education, 2010, 47, 132-150.	0.8	5
184	POLYNOMIAL TRAJECTORY ALGORITHM FOR A BIPED ROBOT. International Journal of Robotics and Automation, 2010, 25, .	0.1	5
185	An Incremental Fuzzy Algorithm for the Balance of Humanoid Robots. , 0, , .		1