Daniela Schiller

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2565886/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Latent cause inference during extinction learning in trauma-exposed individuals with and without PTSD. Psychological Medicine, 2022, 52, 3834-3845.	4.5	9
2	Consensus Definition of Misophonia: A Delphi Study. Frontiers in Neuroscience, 2022, 16, 841816.	2.8	69
3	The promise of low-tech intervention in a high-tech era: Remodeling pathological brain circuits using behavioral reverse engineering. Neuroscience and Biobehavioral Reviews, 2022, 137, 104652.	6.1	8
4	Evidence for a minimal role of stimulus awareness in reversal of threat learning. Learning and Memory, 2021, 28, 95-103.	1.3	5
5	Neural Computations of Threat. Trends in Cognitive Sciences, 2021, 25, 151-171.	7.8	53
6	Active suppression prevents the return of threat memory in humans. Communications Biology, 2021, 4, 609.	4.4	8
7	Hippocampal contributions to social and cognitive deficits in autism spectrum disorder. Trends in Neurosciences, 2021, 44, 793-807.	8.6	85
8	You have to read this. Nature Human Behaviour, 2021, 5, 1466-1468.	12.0	1
9	Finding positive meaning in memories of negative events adaptively updates memory. Nature Communications, 2021, 12, 6601.	12.8	18
10	Targeting the reconsolidation of traumatic memories with a brief 2-session imaginal exposure intervention in post-traumatic stress disorder. Journal of Affective Disorders, 2020, 276, 487-494.	4.1	15
11	Delay discounting decisions are linked to temporal distance representations of world events across cultures. Scientific Reports, 2020, 10, 12913.	3.3	9
12	The emergence of ketamine as a novel treatment for posttraumatic stress disorder. Advances in Pharmacology, 2020, 89, 261-286.	2.0	48
13	Realizing the Clinical Potential of Computational Psychiatry: Report From the Banbury Center Meeting, February 2019. Biological Psychiatry, 2020, 88, e5-e10.	1.3	36
14	Le réseau social dans notre cerveau. , 2020, Nº 120, 30-37.		0
15	Neural computations of threat in the aftermath of combat trauma. Nature Neuroscience, 2019, 22, 470-476.	14.8	58
16	The effect of mindfulness training on extinction retention. Scientific Reports, 2019, 9, 19896.	3.3	15
17	Post-retrieval oxytocin facilitates next day extinction of threat memory in humans. Psychopharmacology, 2019, 236, 293-301.	3.1	13
18	Threat-related disorders as persistent motivational states of defense. Current Opinion in Behavioral Sciences, 2019, 26, 62-68.	3.9	12

#	Article	IF	CITATIONS
19	The social hippocampus. Hippocampus, 2018, 28, 672-679.	1.9	131
20	Cover Image, Volume 28, Issue 9. Hippocampus, 2018, 28, C1-C1.	1.9	0
21	The Hippocampus and Social Impairment in Psychiatric Disorders. Cold Spring Harbor Symposia on Quantitative Biology, 2018, 83, 105-118.	1.1	17
22	Attenuating Neural Threat Expression with Imagination. Neuron, 2018, 100, 994-1005.e4.	8.1	74
23	Evidence of prefrontal hyperactivation to food-cue reversal learning in adolescents with anorexia nervosa. Behaviour Research and Therapy, 2018, 111, 36-43.	3.1	13
24	Navigating Social Space. Neuron, 2018, 100, 476-489.	8.1	113
25	Sensitization of the Neural Salience Network to Repeated Emotional Stimuli Following Initial Habituation in Patients With Borderline Personality Disorder. American Journal of Psychiatry, 2018, 175, 657-664.	7.2	18
26	Fast and slow extinction pathways in defensive survival circuits. Current Opinion in Behavioral Sciences, 2018, 24, 96-103.	3.9	6
27	Reminder duration determines threat memory modification in humans. Scientific Reports, 2018, 8, 8848.	3.3	24
28	An Update on Memory Reconsolidation Updating. Trends in Cognitive Sciences, 2017, 21, 531-545.	7.8	366
29	Neuroscience: Hacking the brain to overcome fear. Nature Human Behaviour, 2017, 1, .	12.0	2
30	Aberrant link between empathy and social attribution style in borderline personality disorder. Journal of Psychiatric Research, 2017, 94, 163-171.	3.1	7
31	Aversive smell associations shape social judgment. Neurobiology of Learning and Memory, 2017, 144, 86-95.	1.9	2
32	Prazosin during threat discrimination boosts memory of the safe stimulus. Learning and Memory, 2017, 24, 597-601.	1.3	12
33	Viewpoints: Dialogues on the functional role of the ventromedial prefrontal cortex. Nature Neuroscience, 2016, 19, 1545-1552.	14.8	135
34	New Learning and Unlearning: Strangers or Accomplices in Threat Memory Attenuation?. Trends in Neurosciences, 2016, 39, 340-351.	8.6	65
35	Neuroscience: This Is Not a Spider. Current Biology, 2016, 26, R898-R900.	3.9	0
36	Running to Forget. International Journal of Neuropsychopharmacology, 2016, 19, pyw017.	2.1	2

#	Article	IF	CITATIONS
37	Translational Approaches Targeting Reconsolidation. Current Topics in Behavioral Neurosciences, 2015, 28, 197-230.	1.7	45
38	Threat processing: models and mechanisms. Wiley Interdisciplinary Reviews: Cognitive Science, 2015, 6, 427-439.	2.8	4
39	A Map for Social Navigation in the Human Brain. Neuron, 2015, 87, 231-243.	8.1	414
40	Testing the disgust conditioning theory of food-avoidance in adolescents with recent onset anorexia nervosa. Behaviour Research and Therapy, 2015, 71, 131-138.	3.1	55
41	Behavioral Genetics: Of Mice, Men, and Internal Bliss. Current Biology, 2015, 25, R455-R457.	3.9	Ο
42	Memory and Space: Towards an Understanding of the Cognitive Map. Journal of Neuroscience, 2015, 35, 13904-13911.	3.6	247
43	Dissociating Value Representation and Inhibition of Inappropriate Affective Response during Reversal Learning in the Ventromedial Prefrontal Cortex. ENeuro, 2015, 2, ENEURO.0072-15.2015.	1.9	16
44	Transcranial direct current stimulation of the prefrontal cortex. NeuroReport, 2014, 25, 480-484.	1.2	54
45	Extinction resistant changes in the human auditory association cortex following threat learning. Neurobiology of Learning and Memory, 2014, 113, 109-114.	1.9	27
46	Between Thoughts and Actions: Motivationally Salient Cues Invigorate Mental Action in the Human Brain. Neuron, 2014, 81, 207-217.	8.1	34
47	A Lighter Shade of Trauma. Biological Psychiatry, 2014, 76, 838-839.	1.3	2
48	Taking Action in the Face of Threat: Neural Synchronization Predicts Adaptive Coping. Journal of Neuroscience, 2014, 34, 14733-14738.	3.6	53
49	Impaired Associative Learning with Food Rewards in Obese Women. Current Biology, 2014, 24, 1731-1736.	3.9	53
50	What Can Fear and Reward Learning Teach Us About Depression?. Current Topics in Behavioral Neurosciences, 2013, 14, 223-242.	1.7	3
51	Reconsolidation in Humans. , 2013, , 185-211.		2
52	Neural mechanisms underlying the integration of situational information into attribution outcomes. Social Cognitive and Affective Neuroscience, 2013, 8, 640-646.	3.0	26
53	Extinction during reconsolidation of threat memory diminishes prefrontal cortex involvement. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 20040-20045.	7.1	253
54	Extinction Training During the Reconsolidation Window Prevents Recovery of Fear. Journal of Visualized Experiments, 2012, , e3893.	0.3	23

#	Article	IF	CITATIONS
55	CHAPTER 9. Neurocircuitry of Anxiety Disorders: Focus on Panic Disorder and Post-traumatic Stress Disorder. RSC Drug Discovery Series, 2012, , 226-257.	0.3	Ο
56	Differential roles of human striatum and amygdala in associative learning. Nature Neuroscience, 2011, 14, 1250-1252.	14.8	300
57	Does Reconsolidation Occur in Humans?. Frontiers in Behavioral Neuroscience, 2011, 5, 24.	2.0	170
58	Affective Neuroscience: Tracing the Trace of Fear. Current Biology, 2011, 21, R695-R696.	3.9	1
59	The neural origins of superficial and individuated judgments about ingroup and outgroup members. Human Brain Mapping, 2010, 31, 150-159.	3.6	79
60	Preventing the return of fear in humans using reconsolidation update mechanisms. Nature, 2010, 463, 49-53.	27.8	1,047
61	Erasing Fear Memories with Extinction Training: Figure 1 Journal of Neuroscience, 2010, 30, 14993-14997.	3.6	206
62	Overlapping neural systems mediating extinction, reversal and regulation of fear. Trends in Cognitive Sciences, 2010, 14, 268-276.	7.8	256
63	Prelimbic Prefrontal Neurons Drive Fear Expression: A Clue for Extinction-Reconsolidation Interactions. Journal of Neuroscience, 2009, 29, 13432-13434.	3.6	6
64	A neural mechanism of first impressions. Nature Neuroscience, 2009, 12, 508-514.	14.8	184
65	From Fear to Safety and Back: Reversal of Fear in the Human Brain. Journal of Neuroscience, 2008, 28, 11517-11525.	3.6	420
66	Evidence for recovery of fear following immediate extinction in rats and humans. Learning and Memory, 2008, 15, 394-402.	1.3	125
67	The role of the striatum in aversive learning and aversive prediction errors. Philosophical Transactions of the Royal Society B: Biological Sciences, 2008, 363, 3787-3800.	4.0	244
68	Abnormally persistent latent inhibition induced by lesions to the nucleus accumbens core, basolateral amygdala and orbitofrontal cortex is reversed by clozapine but not by haloperidol. Journal of Psychiatric Research, 2006, 40, 167-177.	3.1	38
69	â€~Compulsive' lever pressing in rats is enhanced following lesions to the orbital cortex, but not to the basolateral nucleus of the amygdala or to the dorsal medial prefrontal cortex. European Journal of Neuroscience, 2005, 21, 2252-2262.	2.6	57
70	Latent inhibition is disrupted by nucleus accumbens shell lesion but is abnormally persistent following entire nucleus accumbens lesion: The neural site controlling the expression and disruption of the stimulus preexposure effect. Behavioural Brain Research, 2005, 162, 246-255.	2.2	56
71	Basolateral amygdala lesions in the rat produce an abnormally persistent latent inhibition with weak preexposure but not with context shift. Behavioural Brain Research, 2005, 163, 115-121.	2.2	17
72	Gender Discriminatory Behavior During Adolescence and Young Adulthood: A Developmental Analysis. Journal of Youth and Adolescence, 2004, 33, 535-546.	3.5	40

#	Article	IF	CITATIONS
73	Lesions to the basolateral amygdala and the orbitofrontal cortex but not to the medial prefrontal cortex produce an abnormally persistent latent inhibition in rats. Neuroscience, 2004, 128, 15-25.	2.3	46
74	Disruption and Potentiation of Latent Inhibition by Risperidone: The Latent Inhibition Model of Atypical Antipsychotic Action. Neuropsychopharmacology, 2003, 28, 499-509.	5.4	26
75	Screening of antipsychotic drugs in animal models. Drug Development Research, 2000, 50, 235-249.	2.9	22
76	The Latent Inhibition Model Dissociates between Clozapine, Haloperidol, and Ritanserin. Neuropsychopharmacology, 2000, 23, 151-161.	5.4	63
77	Attenuating Neural Threat Expression with Imagination. SSRN Electronic Journal, O, , .	0.4	0