Seyed Mohamad Moosavi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2565788/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Data-driven design of metal–organic frameworks for wet flue gas CO2 capture. Nature, 2019, 576, 253-256.	13.7	438
2	Rapid, Selective Heavy Metal Removal from Water by a Metal–Organic Framework/Polydopamine Composite. ACS Central Science, 2018, 4, 349-356.	5.3	311
3	Big-Data Science in Porous Materials: Materials Genomics and Machine Learning. Chemical Reviews, 2020, 120, 8066-8129.	23.0	284
4	Understanding the diversity of the metal-organic framework ecosystem. Nature Communications, 2020, 11, 4068.	5.8	282
5	The Role of Machine Learning in the Understanding and Design of Materials. Journal of the American Chemical Society, 2020, 142, 20273-20287.	6.6	179
6	Force-Field Prediction of Materials Properties in Metal-Organic Frameworks. Journal of Physical Chemistry Letters, 2017, 8, 357-363.	2.1	172
7	Capturing chemical intuition in synthesis of metal-organic frameworks. Nature Communications, 2019, 10, 539.	5.8	153
8	Generating carbon schwarzites via zeolite-templating. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E8116-E8124.	3.3	88
9	Preserving Porosity of Mesoporous Metal–Organic Frameworks through the Introduction of Polymer Guests. Journal of the American Chemical Society, 2019, 141, 12397-12405.	6.6	68
10	Improving the Mechanical Stability of Metal–Organic Frameworks Using Chemical Caryatids. ACS Central Science, 2018, 4, 832-839.	5.3	67
11	Anomalous Effects of Velocity Rescaling Algorithms: The Flying Ice Cube Effect Revisited. Journal of Chemical Theory and Computation, 2018, 14, 5262-5272.	2.3	66
12	High-Throughput Screening Approach for Nanoporous Materials Genome Using Topological Data Analysis: Application to Zeolites. Journal of Chemical Theory and Computation, 2018, 14, 4427-4437.	2.3	53
13	Diversifying Databases of Metal Organic Frameworks for High-Throughput Computational Screening. ACS Applied Materials & Interfaces, 2021, 13, 61004-61014.	4.0	50
14	Toward smart carbon capture with machine learning. Cell Reports Physical Science, 2021, 2, 100396.	2.8	38
15	Using collective knowledge to assign oxidation states of metal cations in metal–organic frameworks. Nature Chemistry, 2021, 13, 771-777.	6.6	35
16	Biporous Metal–Organic Framework with Tunable CO ₂ /CH ₄ Separation Performance Facilitated by Intrinsic Flexibility. ACS Applied Materials & Interfaces, 2018, 10, 36144-36156.	4.0	33
17	Translational and Rotational Motion of C8 Aromatics Adsorbed in Isotropic Porous Media (MOF-5): NMR Studies and MD Simulations. Journal of Physical Chemistry C, 2017, 121, 15456-15462.	1.5	25
18	Transport characteristics of saturated gas diffusion layers treated with hydrophobic coatings. Chemical Engineering Science, 2018, 176, 503-514.	1.9	25

#	Article	IF	CITATIONS
19	Geometric landscapes for material discovery within energy–structure–function maps. Chemical Science, 2020, 11, 5423-5433.	3.7	23
20	A data-driven perspective on the colours of metal–organic frameworks. Chemical Science, 2021, 12, 3587-3598.	3.7	16
21	Thermoelasticity of Flexible Organic Crystals from Quasi-harmonic Lattice Dynamics: The Case of Copper(II) Acetylacetonate. Journal of Physical Chemistry Letters, 2020, 11, 8543-8548.	2.1	15
22	Ab Initio Flexible Force Field for Metal–Organic Frameworks Using Dummy Model Coordination Bonds. Journal of Chemical Theory and Computation, 2019, 15, 3666-3677.	2.3	9
23	Guest-dependent negative thermal expansion in a lanthanide-based metal–organic framework. CrystEngComm, 2019, 21, 5292-5298.	1.3	4
24	Electrophoretic velocity of spherical particles in Quemada fluids. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 436, 225-230.	2.3	0