
Dewei Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2565673/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A multifunctional potassium peroxodisulfate activation strategy to construction of N, S co-doped carbon nanosheets for high-performance Zn-ion hybrid supercapacitors. Biomass Conversion and Biorefinery, 2024, 14, 7031-7043.	4.6	0
2	N/S co-doped interconnected 3D carbon frameworks for aqueous and high voltage flexible quasi-solid-state supercapacitors. Ionics, 2022, 28, 2377.	2.4	1
3	From Volatile Ethanolamine to Highly N, B Dual Doped Carbon Superstructures for Advanced Zn-Ion Hybrid Capacitors: Unveiling the Respective Effects Heteroatom Functionalities. Journal of the Electrochemical Society, 2022, 169, 070511.	2.9	2
4	Sâ€doped <scp>3D</scp> porous carbons derived from potassium thioacetate activation strategy for zincâ€ion hybrid supercapacitor applications. International Journal of Energy Research, 2021, 45, 2498-2510.	4.5	41
5	A robust magnesiothermic reduction combined self-activation strategy towards highly-curved carbon nanosheets for advanced zinc-ion hybrid supercapacitors applications. Nanotechnology, 2021, 32, 185403.	2.6	4
6	Glycerol derived mesopore-enriched hierarchically carbon nanosheets as the cathode for ultrafast zinc ion hybrid supercapacitor applications. Electrochimica Acta, 2021, 379, 138170.	5.2	39
7	Design of honeycomb-like hierarchically porous carbons with engineered mesoporosity for aqueous zinc-ion hybrid supercapacitors applications. Journal of Energy Storage, 2021, 38, 102534.	8.1	23
8	Mohr's salt assisted KOH activation strategy to customize S-doped hierarchical carbon frameworks enabling satisfactory rate performance of supercapacitors. Journal of Alloys and Compounds, 2021, 876, 160203.	5.5	20
9	A Templateâ€Engaged, Selfâ€Doped Strategy to Nâ€Doped Hollow Carbon Nanoboxes for Zincâ€Ion Hybrid Supercapacitors. ChemElectroChem, 2021, 8, 4096-4107.	3.4	9
10	A facile Zn involved self-sacrificing template-assisted strategy towards porous carbon frameworks for aqueous supercapacitors with high ions diffusion coefficient. Diamond and Related Materials, 2020, 103, 107696.	3.9	10
11	From starch to porous carbon nanosheets: Promising cathodes for high-performance aqueous Zn-ion hybrid supercapacitors. Microporous and Mesoporous Materials, 2020, 306, 110445.	4.4	53
12	Microstructure design of porous nanocarbons for ultrahigh-energy and power density supercapacitors in ionic liquid electrolyte. Journal of Materials Science, 2020, 55, 7477-7491.	3.7	11
13	A robust 2D porous carbon nanoflake cathode for high energy-power density Zn-ion hybrid supercapacitor applications. Applied Surface Science, 2020, 510, 145384.	6.1	127
14	A universal strategy towards porous carbons with ultrahigh specific surface area for high-performance symmetric supercapacitor applications. Journal of Materials Science: Materials in Electronics, 2019, 30, 13636-13646.	2.2	7
15	A Potassium Formate Activation Strategy for the Synthesis of Ultrathin Graphene-like Porous Carbon Nanosheets for Advanced Supercapacitor Applications. ACS Sustainable Chemistry and Engineering, 2019, 7, 18901-18911.	6.7	51
16	Gunpowder chemistry-assisted exfoliation approach for the synthesis of porous carbon nanosheets for high-performance ionic liquid based supercapacitors. Journal of Energy Storage, 2019, 24, 100764.	8.1	12
17	A versatile Co-Activation strategy towards porous carbon nanosheets for high performance ionic liquid based supercapacitor applications. Journal of Alloys and Compounds, 2019, 786, 109-117.	5.5	18
18	A robust strategy for the general synthesis of hierarchical carbons constructed by nanosheets and their application in high performance supercapacitor in ionic liquid electrolyte. Carbon, 2019, 141, 40-49.	10.3	32

Dewei Wang

#	Article	IF	CITATIONS
19	Morphology-controllable synthesis of nanocarbons and their application in advanced symmetric supercapacitor in ionic liquid electrolyte. Applied Surface Science, 2019, 473, 1014-1023.	6.1	20
20	Unusual carbon nanomesh constructed by interconnected carbon nanocages for ionic liquid-based supercapacitor with superior rate capability. Chemical Engineering Journal, 2018, 342, 474-483.	12.7	61
21	Tunable synthesis of nanocarbon architectures and their application in advanced symmetric supercapacitors. Applied Surface Science, 2018, 443, 291-300.	6.1	26
22	Rational synthesis of porous carbon nanocages and their potential application in high rate supercapacitors. Journal of Electroanalytical Chemistry, 2018, 815, 166-174.	3.8	22
23	Unconventional mesopore carbon nanomesh prepared through explosion–assisted activation approach: A robust electrode material for ultrafast organic electrolyte supercapacitors. Carbon, 2017, 119, 30-39.	10.3	80
24	A smart bottom-up strategy for the fabrication of porous carbon nanosheets containing rGO for high-rate supercapacitors in organic electrolyte. Electrochimica Acta, 2017, 252, 109-118.	5.2	22
25	Construction of hierarchical porous graphene–carbon nanotubes hybrid with high surface area for high performance supercapacitor applications. Journal of Solid State Electrochemistry, 2017, 21, 563-571.	2.5	12
26	Unique porous carbon constructed by highly interconnected naonowalls for high-performance supercapacitor in organic electrolyte. Materials Letters, 2017, 189, 50-53.	2.6	15
27	From Trash to Treasure: Direct Transformation of Onion Husks into Three-Dimensional Interconnected Porous Carbon Frameworks for High-Performance Supercapacitors in Organic Electrolyte. Electrochimica Acta, 2016, 216, 405-411.	5.2	98
28	A melt route for the synthesis of activated carbon derived from carton box for high performance symmetric supercapacitor applications. Journal of Power Sources, 2016, 307, 401-409.	7.8	144
29	Facile synthesis of wheat bran-derived honeycomb-like hierarchical carbon for advanced symmetric supercapacitor applications. Journal of Solid State Electrochemistry, 2015, 19, 577-584.	2.5	59
30	A general approach for fabrication of nitrogen-doped graphene sheets and its application in supercapacitors. Journal of Colloid and Interface Science, 2014, 417, 270-277.	9.4	93
31	Laser induced self-propagating reduction and exfoliation of graphite oxide as an electrode material for supercapacitors. Electrochimica Acta, 2014, 141, 271-278.	5.2	18
32	Controlled synthesis of porous nickel oxide nanostructures and their electrochemical capacitive behaviors. Ionics, 2013, 19, 559-570.	2.4	12
33	Superparamagnetic Magnetite Nanocrystals–Graphene Oxide Nanocomposites: Facile Synthesis and Their Enhanced Electric Double–Layer Capacitor Performance. Journal of Nanoscience and Nanotechnology, 2012, 12, 4583-4590.	0.9	7
34	Nanostructured Fe2O3–graphene composite as a novel electrode material for supercapacitors. Journal of Solid State Electrochemistry, 2012, 16, 2095-2102.	2.5	174
35	Facile Synthesis of Porous Mn ₃ O ₄ NanoÂcrystal–Graphene Nanocomposites for Electrochemical Supercapacitors. European Journal of Inorganic Chemistry, 2012, 2012, 628-635.	2.0	115
36	Shape-controlled Synthesis of Porous SnO2 Nanostructures via Morphologically Conserved Transformation from SnC2O4 Precursor Approach. Nano-Micro Letters, 2011, 3, 34-42.	27.0	17

Dewei Wang

#	Article	IF	CITATIONS
37	Controlled synthesis of mesoporous hematite nanostructures and their application as electrochemical capacitor electrodes. Nanotechnology, 2011, 22, 135604.	2.6	90
38	Morphology-Controllable Synthesis of Cobalt Oxalates and Their Conversion to Mesoporous Co ₃ O ₄ Nanostructures for Application in Supercapacitors. Inorganic Chemistry, 2011, 50, 6482-6492.	4.0	285
39	Controlled growth of uniform nanoflakes-built pyrite FeS2 microspheres and their electrochemical properties. Ionics, 2011, 17, 163-167.	2.4	21
40	Porous SnO2 nanoflakes with loose-packed structure: Morphology conserved transformation from SnS2 precursor and application in lithium ion batteries and gas sensors. Journal of Physics and Chemistry of Solids, 2011, 72, 630-636.	4.0	27
41	Shape controlled growth of pyrite FeS2 crystallites via a polymer-assisted hydrothermal route. CrystEngComm, 2010, 12, 3797.	2.6	58