Chaoqi Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2565628/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Self-supported VN arrays coupled with N-doped carbon nanotubes embedded with Co nanoparticles as a multifunctional sulfur host for lithium-sulfur batteries. Chemical Engineering Journal, 2022, 430, 132931.	6.6	27
2	A High Conductivity 1D π–d Conjugated Metal–Organic Framework with Efficient Polysulfide Trappingâ€Diffusionâ€Catalysis in Lithium–Sulfur Batteries. Advanced Materials, 2022, 34, e2108835.	11.1	86
3	Robust Lithium–Sulfur Batteries Enabled by Highly Conductive WSe ₂ â€Based Superlattices with Tunable Interlayer Space. Advanced Functional Materials, 2022, 32, .	7.8	51
4	Enhanced Polysulfide Conversion with Highly Conductive and Electrocatalytic Iodineâ€Đoped Bismuth Selenide Nanosheets in Lithium–Sulfur Batteries. Advanced Functional Materials, 2022, 32, .	7.8	49
5	Controlled oxygen doping in highly dispersed Ni-loaded g-C3N4 nanotubes for efficient photocatalytic H2O2 production. Chemical Engineering Journal, 2022, 441, 135999.	6.6	88
6	2D/2D Heterojunction of TiO2 Nanoparticles and Ultrathin G-C3N4 Nanosheets for Efficient Photocatalytic Hydrogen Evolution. Nanomaterials, 2022, 12, 1557.	1.9	6
7	Phase Engineering of Defective Copper Selenide toward Robust Lithium–Sulfur Batteries. ACS Nano, 2022, 16, 11102-11114.	7.3	50
8	Surface strain-enhanced MoS2 as a high-performance cathode catalyst for lithium–sulfur batteries. EScience, 2022, 2, 405-415.	25.0	70
9	Atomically dispersed Fe in a C ₂ N Based Catalyst as a Sulfur Host for Efficient Lithium–Sulfur Batteries. Advanced Energy Materials, 2021, 11, 2003507.	10.2	91
10	2Dâ€Organic Layered Materials: Atomically dispersed Fe in a C ₂ N Based Catalyst as a Sulfur Host for Efficient Lithium–Sulfur Batteries (Adv. Energy Mater. 5/2021). Advanced Energy Materials, 2021, 11, 2170022.	10.2	3
11	Hierarchical Nanoreactor with Multiple Adsorption and Catalytic Sites for Robust Lithium–Sulfur Batteries. ACS Nano, 2021, 15, 6849-6860.	7.3	70
12	Tubular CoFeP@CN as a Mott–Schottky Catalyst with Multiple Adsorption Sites for Robust Lithiumâ''Sulfur Batteries. Advanced Energy Materials, 2021, 11, 2100432.	10.2	125
13	NbSe ₂ Meets C ₂ N: A 2Dâ€2D Heterostructure Catalysts as Multifunctional Polysulfide Mediator in Ultraâ€Longâ€Life Lithium–Sulfur Batteries. Advanced Energy Materials, 2021, 11, 2101250.	10.2	89
14	Monodisperse CoSn and NiSn Nanoparticles Supported on Commercial Carbon as Anode for Lithium- and Potassium-Ion Batteries. ACS Applied Materials & Interfaces, 2020, 12, 4414-4422.	4.0	46
15	ZnSe/N-Doped Carbon Nanoreactor with Multiple Adsorption Sites for Stable Lithium–Sulfur Batteries. ACS Nano, 2020, 14, 15492-15504.	7.3	114
16	SnS2/g-C3N4/graphite nanocomposites as durable lithium-ion battery anode with high pseudocapacitance contribution. Electrochimica Acta, 2020, 349, 136369.	2.6	29
17	A low temperature solid state reaction to produce hollow MnxFe3-xO4 nanoparticles as anode for lithium-ion batteries. Nano Energy, 2019, 66, 104199.	8.2	21
18	Co–Sn Nanocrystalline Solid Solutions as Anode Materials in Lithiumâ€Ion Batteries with High Pseudocapacitive Contribution. ChemSusChem, 2019, 12, 1451-1458.	3.6	38

CHAOQI ZHANG

#	Article	IF	CITATIONS
19	Combined High Catalytic Activity and Efficient Polar Tubular Nanostructure in Urchinâ€Like Metallic NiCo ₂ Se ₄ for Highâ€Performance Lithium–Sulfur Batteries. Advanced Functional Materials, 2019, 29, 1903842.	7.8	153
20	Chromium phosphide CrP as highly active and stable electrocatalysts for oxygen electroreduction in alkaline media. Applied Catalysis B: Environmental, 2019, 256, 117846.	10.8	20
21	Compositionally tuned NixSn alloys as anode materials for lithium-ion and sodium-ion batteries with a high pseudocapacitive contribution. Electrochimica Acta, 2019, 304, 246-254.	2.6	51
22	MOF-Derived Hybrid Hollow Submicrospheres of Nitrogen-Doped Carbon-Encapsulated Bimetallic Ni–Co–S Nanoparticles for Supercapacitors and Lithium Ion Batteries. Inorganic Chemistry, 2019, 58, 3916-3924.	1.9	82
23	Colloidal Ni–Co–Sn nanoparticles as efficient electrocatalysts for the methanol oxidation reaction. Journal of Materials Chemistry A, 2018, 6, 22915-22924.	5.2	85
24	Supercapacitors Based on Reduced Graphene Oxide Nanofibers Supported Ni(OH) ₂ Nanoplates with Enhanced Electrochemical Performance. ACS Applied Materials & Interfaces, 2016, 8, 22977-22987.	4.0	60
25	Controlled Oxygen Doping in Highly Dispersed Ni-Loaded g-C ₃ N ₄ Nanotubes for Efficient Photocatalytic H ₂ O ₂ Production. SSRN Electronic Journal, 0, , .	0.4	0
26	Controlled Oxygen Doping in Highly Dispersed Ni-Loaded G-C3n4 Nanotubes for Efficient Photocatalytic H2o2 Production. SSRN Electronic Journal, 0, , .	0.4	1