Ashok Srivastava

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2565618/publications.pdf Version: 2024-02-01

ACHOK SDIVASTAVA

#	Article	IF	CITATIONS
1	Ternary input signal to binary bit output conversion CMOS integrated circuit design using neuron MOSFETs. Microsystem Technologies, 2022, 28, 101-108.	2.0	2
2	Evaluating the Performances of Memristor, FinFET, and Graphene TFET in VLSI Circuit Design. , 2021, , .		13
3	An Ultra-Low Power MOS2 Tunnel Field Effect Transistor PLL Design for IoT Applications. , 2021, , .		7
4	Phase Noise and Jitter Measurements in SEU-Hardened CMOS Phase Locked Loop Design. , 2021, , .		8
5	High Q-Factor Graphene-Based Inductor CMOS LC Voltage Controlled Oscillator for PLL Applications. , 2021, , .		1
6	Analytical Current Transport Modeling of Monolayer Molybdenum Disulfide-Based Dual Gate Tunnel Field Effect Transistor. IEEE Nanotechnology Magazine, 2020, 19, 620-627.	2.0	16
7	0.4ÂmW, 0.27 pJ/bit true random number generator using jitter, metastability and current starved topology. IET Circuits, Devices and Systems, 2020, 14, 1001-1011.	1.4	3
8	A 250 MHz-to-1.6 GHz Phase Locked Loop Design in Hybrid FinFET-Memristor Technology. , 2020, , .		9
9	Memristor-Based Loop Filter Design for Phase Locked Loop. Journal of Low Power Electronics and Applications, 2019, 9, 24.	2.0	16
10	Synthesis of Two-Dimensional Diamond From Graphene on Copper. , 2019, , .		1
11	Computational study of silicene nanoribbon tunnel field-effect transistor. Microsystem Technologies, 2019, , 1.	2.0	3
12	Long Short-Term Memory Network Design for Analog Computing. ACM Journal on Emerging Technologies in Computing Systems, 2019, 15, 1-27.	2.3	33
13	qSwitch: Dynamical Off-Chip Bandwidth Allocation Between Local and Remote Accesses. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2018, 37, 75-87.	2.7	2
14	A Multiple Input Floating Gate Based Arithmetic Logic Unit with a Feedback Loop for Digital Calibration. Journal of Low Power Electronics, 2018, 14, 535-547.	0.6	2
15	Evaluation of Four Power Gating Schemes Applied to ECRL Adiabatic Logic. , 2018, , .		2
16	SPICE-Compatible Modeling of Silicene Field Effect Transistor and Analog Circuit Design. , 2018, , .		0
17	Calibration method to reduce the error in logarithmic conversion with its circuit implementation. IET Circuits, Devices and Systems, 2018, 12, 301-308.	1.4	1
18	Using Switchable Pins to Increase Off-Chip Bandwidth in Chip-Multiprocessors. IEEE Transactions on Parallel and Distributed Systems, 2017, 28, 274-289.	5.6	3

ASHOK SRIVASTAVA

#	Article	IF	CITATIONS
19	A novel switchable pin method for regulating power in chip-multiprocessor. The Integration VLSI Journal, 2017, 58, 329-338.	2.1	ο
20	Modeling of Joule Heating Induced Effects in Multiwall Carbon Nanotube Interconnects. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2017, 25, 3089-3098.	3.1	8
21	Compact Modeling of Graphene Barristor for Digital Integrated Circuit Design. , 2017, , .		Ο
22	Subthreshold Slope of Vertical Graphene Interlayer Tunnel Transistor. Nano, 2017, 12, 1750069.	1.0	0
23	Effect of Edge Roughness on Static Characteristics of Graphene Nanoribbon Field Effect Transistor. Electronics (Switzerland), 2016, 5, 11.	3.1	14
24	Transport Phenomenon in Boron–GroupV Linear Atomic Chains Under Tensile Stress for Nanoscale Devices and Interconnects: First Principles Analysis. IEEE Transactions on Electron Devices, 2016, 63, 4899-4906.	3.0	8
25	Modeling of Graphene Nanoribbon Tunnel Field Effect Transistor in Verilog-A for Digital Circuit Design. , 2016, , .		7
26	Width-Dependent Characteristics of Graphene Nanoribbon Field Effect Transistor for High Frequency Applications. , 2016, , .		1
27	Vertical MoS 2 / h BN/MoS 2 interlayer tunneling field effect transistor. Solid-State Electronics, 2016, 126, 96-103.	1.4	21
28	A Low-Cost Mixed Clock Generator for High Speed Adiabatic Logic. , 2016, , .		2
29	Analytical Current Transport Modeling of Graphene Nanoribbon Tunnel Field-Effect Transistors for Digital Circuit Design. IEEE Nanotechnology Magazine, 2016, 15, 39-50.	2.0	34
30	A Graphene Switching Transistor for Vertical Circuit Design. ECS Journal of Solid State Science and Technology, 2016, 5, M13-M21.	1.8	4
31	Clocked Adiabatic XOR and XNOR CMOS Gates Design Based on Graphene Nanoribbon Complementary Field Effect Transistors. , 2015, , .		Ο
32	Circuit Implementation of Switchable Pins in Chip Multiprocessor. , 2015, , .		2
33	An Algorithm Used in a Power Monitor to Mitigate Dark Silicon on VLSI Chip. , 2015, , .		1
34	Characterization of SWCNT Bundle Based VLSI Interconnect with Self-heating Induced Scatterings. , 2015, , .		5
35	Powering Up Dark Silicon: Mitigating the Limitation of Power Delivery via Dynamic Pin Switching. IEEE Transactions on Emerging Topics in Computing, 2015, 3, 489-501.	4.6	4
36	Increasing off-chip bandwidth in multi-core processors with switchable pins. , 2014, , .		6

Increasing off-chip bandwidth in multi-core processors with switchable pins. , 2014, , . 36

ASHOK SRIVASTAVA

#	Article	IF	CITATIONS
37	Characterization of MWCNT VLSI Interconnect with Self-Heating Induced Scatterings. , 2014, , .		5
38	A novel graphene nanoribbon field effect transistor for integrated circuit design. , 2013, , .		13
39	A Thermal Model for Carbon Nanotube Interconnects. Nanomaterials, 2013, 3, 229-241.	4.1	22
40	Testing of Trusted CMOS Data Converters. , 2012, , .		0
41	Emerging Carbon Nanotube Electronic Circuits, Modeling, and Performance. VLSI Design, 2010, 2010, 1-8.	0.5	6
42	Carbon nanotubes for next generation very large scale integration interconnects. Journal of Nanophotonics, 2010, 4, 041690.	1.0	42
43	Combined oscillation and I DDQ testing of a CMOS amplifier circuit. International Journal of Electronics, 2010, 97, 1-15.	1.4	3
44	A model of multi-walled carbon nanotube interconnects. , 2009, , .		8
45	Current transport modeling of carbon nanotube field effect transistors. Physica Status Solidi (A) Applications and Materials Science, 2009, 206, 1569-1578.	1.8	19
46	Carrier density and effective mass calculations in carbon nanotubes. Physica Status Solidi (B): Basic Research, 2008, 245, 2558-2562.	1.5	61
47	Numerical Modeling of the I-V Characteristic of Carbon Nanotube Field Effect Transistors (CNT-FETs). System Theory, Proceedings of the Southeastern Symposium on, 2008, , .	0.0	7
48	THRESHOLD AND SATURATION VOLTAGES MODELING OF CARBON NANOTUBE FIELD EFFECT TRANSISTORS (CNT-FETs). Nano, 2008, 03, 195-201.	1.0	10
49	An Adaptive Body-Bias Generator for Low Voltage CMOS VLSI Circuits. International Journal of Distributed Sensor Networks, 2008, 4, 213-222.	2.2	16
50	ΔI _{DDQ} testing of a 12-bit recycling architecture based ADC. , 2007, , .		0
51	Hot Carrier Effects in Wireless Communication Systems Built on Short-Channel MOSFETs. IEEE Transactions on Wireless Communications, 2007, 6, 2402-2406.	9.2	2
52	Carrier Density and Effective Mass Calculations for Carbon Nanotubes. , 2007, , .		5
53	An Experimental Study of Phase Noise in CMOS Phase-Locked Loops Considering Different Noise Sources. Midwest Symposium on Circuits and Systems, 2006, , .	1.0	0
54	HOT CARRIER EFFECTS ON JITTER PERFORMANCE IN CMOS VOLTAGE-CONTROLLED OSCILLATORS. Fluctuation and Noise Letters, 2006, 06, L329-L334.	1.5	6

#	Article	IF	CITATIONS
55	Delta-I _{DDQ} Testing of a CMOS 12-Bit Charge Scaling DigitaltoAnalog Converter. , 2006, , .		3
56	A comparator-based I/sub DDQ/ testing of CMOS analog and mixed-signal integrated circuits. , 2005, , .		2
57	<title>Novel scheme for a higher bandwidth sensor readout</title> ., 2002, , .		5