
Philip J Gage

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/256559/publications.pdf Version: 2024-02-01

PHILIP L CACE

#	Article	IF	CITATIONS
1	Fate Maps of Neural Crest and Mesoderm in the Mammalian Eye. , 2005, 46, 4200.		326
2	Pituitary homeobox 2, a novel member of the bicoid-related family of homeobox genes, is a potential regulator of anterior structure formation. Human Molecular Genetics, 1997, 6, 457-464.	1.4	243
3	Expression of the homeobox gene Pitx2 in neural crest is required for optic stalk and ocular anterior segment development. Human Molecular Genetics, 2005, 14, 3347-3359.	1.4	202
4	<i>Pitx2</i> is required at multiple stages of pituitary organogenesis: pituitary primordium formation and cell specification. Development (Cambridge), 2002, 129, 329-337.	1.2	168
5	The bicoid -related Pitx gene family in development. Mammalian Genome, 1999, 10, 197-200.	1.0	148
6	Functional interactions between FOXC1 and PITX2 underlie the sensitivity to FOXC1 gene dose in Axenfeld–Rieger syndrome and anterior segment dysgenesis. Human Molecular Genetics, 2006, 15, 905-919.	1.4	137
7	Tbx1 affects asymmetric cardiac morphogenesis by regulating Pitx2 in the secondary heart field. Development (Cambridge), 2006, 133, 1565-1573.	1.2	132
8	PITX Genes Are Required for Cell Survival and Lhx3 Activation. Molecular Endocrinology, 2005, 19, 1893-1903.	3.7	128
9	The canonical Wnt signaling antagonist DKK2 is an essential effector of PITX2 function during normal eye development. Developmental Biology, 2008, 317, 310-324.	0.9	115
10	Pitx2 regulates cardiac left–right asymmetry by patterning second cardiac lineage-derived myocardium. Developmental Biology, 2006, 296, 437-449.	0.9	110
11	Mutation of FOXC1 and PITX2 induces cerebral small-vessel disease. Journal of Clinical Investigation, 2014, 124, 4877-4881.	3.9	105
12	PITX2 is required for normal development of neurons in the mouse subthalamic nucleus and midbrain. Developmental Biology, 2004, 267, 93-108.	0.9	94
13	Extraocular Muscle Morphogenesis and Gene Expression Are Regulated byPitx2Gene Dose. , 2006, 47, 1785.		94
14	Myocardial Pitx2 Differentially Regulates the Left Atrial Identity and Ventricular Asymmetric Remodeling Programs. Circulation Research, 2008, 102, 813-822.	2.0	88
15	Characterization of mouse orthologue of ELOVL4: genomic organization and spatial and temporal expression. Genomics, 2004, 83, 626-635.	1.3	86
16	Sequential expression and redundancy of Pitx2 and Pitx3 genes during muscle development. Developmental Biology, 2007, 307, 421-433.	0.9	77
17	AP-2α knockout mice exhibit optic cup patterning defects and failure of optic stalk morphogenesis. Human Molecular Genetics, 2010, 19, 1791-1804.	1.4	72
18	Pitx2 is required at multiple stages of pituitary organogenesis: pituitary primordium formation and cell specification. Development (Cambridge), 2002, 129, 329-37.	1.2	64

Philip J Gage

#	Article	lF	CITATIONS
19	Foxc1 and Foxc2 in the Neural Crest Are Required for Ocular Anterior Segment Development. , 2017, 58, 1368.		62
20	Signaling "crossâ€ŧalk―is integrated by transcription factors in the development of the anterior segment in the eye. Developmental Dynamics, 2009, 238, 2149-2162.	0.8	61
21	Pitx2 Distinguishes Subtypes of Terminally Differentiated Neurons in the Developing Mouse Neuroepithelium. Developmental Biology, 2002, 252, 84-99.	0.9	59
22	Pitx2 is an upstream activator of extraocular myogenesis and survival. Developmental Biology, 2011, 349, 395-405.	0.9	58
23	Shroom3 and a Pitx2-N-cadherin pathway function cooperatively to generate asymmetric cell shape changes during gut morphogenesis. Developmental Biology, 2011, 357, 227-234.	0.9	51
24	The homeodomain transcription factor PITX2 is required for specifying correct cell fates and establishing angiogenic privilege in the developing cornea. Developmental Dynamics, 2014, 243, 1391-1400.	0.8	50
25	Heterozygous <i>Pitx2</i> Null Mice Accurately Recapitulate the Ocular Features of Axenfeld-Rieger Syndrome and Congenital Glaucoma. , 2016, 57, 5023.		46
26	Nestin-Cre mediated deletion ofPitx2 in the mouse. Genesis, 2006, 44, 336-344.	0.8	41
27	Canonical Wnt/βâ€catenin signaling is required for maintenance but not activation of <i>Pitx2</i> expression in neural crest during eye development. Developmental Dynamics, 2010, 239, 3215-3225.	0.8	35
28	Expression of Pitx2 in stromal cells is required for normal hematopoiesis. Blood, 2006, 107, 492-500.	0.6	31
29	Transgenic Mice Expressing Cre-Recombinase Specifically in M- or S-Cone Photoreceptors. , 2004, 45, 42.		29
30	FGF9–Pitx2–FGF10 signaling controls cecal formation in mice. Developmental Biology, 2012, 369, 340-348.	0.9	29
31	AP-2Î ² Is a Downstream Effector of PITX2 Required to Specify Endothelium and Establish Angiogenic Privilege During Corneal Development. , 2016, 57, 1072.		28
32	Reduced Human and Murine Corneal Thickness in an Axenfeld-Rieger Syndrome Subtype. , 2006, 47, 4905.		26
33	Mouse Models for the Dissection of CHD7 Functions in Eye Development and the Molecular Basis for Ocular Defects in CHARGE Syndrome. , 2015, 56, 7923.		26
34	β-catenin is required in the neural crest and mesencephalon for pituitary gland organogenesis. BMC Developmental Biology, 2016, 16, 16.	2.1	25
35	Human PRKC Apoptosis WT1 Regulator Is a Novel PITX2-interacting Protein That Regulates PITX2 Transcriptional Activity in Ocular Cells. Journal of Biological Chemistry, 2009, 284, 34829-34838.	1.6	23
36	Hematopoiesis following disruption of the Pitx2 homeodomain gene. Experimental Hematology, 2006, 34, 167-178.	0.2	7

#	Article	IF	CITATIONS
37	A targeted approach to genome-wide studies reveals new genetic associations with central corneal thickness. Molecular Vision, 2017, 23, 952-962.	1.1	5
38	Oculomotor nerve guidance and terminal branching requires interactions with differentiating extraocular muscles. Developmental Biology, 2021, 476, 272-281.	0.9	4